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Abstract: Frame axioms and properties are crucial for ensuring the correctness of operations by defining which parts of 

a program’s state may change during operation execution. Despite their significance, there has been no known 

method for asserting frame properties of operations for runtime checks. This paper introduces a practical 

approach that utilizes abstract models and executable assertions to effectively check frame properties at 

runtime. By defining abstract models that capture relevant state variables and their relationships, programmers 

can specify abstractly the parts of an object's state that may change during operation execution. These frame 

properties, specified in terms of abstract models and embedded as executable assertions within the code, 

enforce behavioral constraints and improve the readability, maintainability, and reusability of the assertion 

code. Additionally, the approach supports the concept of observable side effects. 

1 INTRODUCTION 

In programming, assertions serve as practical tools 

for ensuring the correctness and reliability of code. 

These assertions allow programmers to express 

conditions that must hold true at specific points in the 

code, serving as checkpoints to detect and diagnose 

errors during debugging and testing phases 

(Matuszek, 1976; Rosenblum, 1995).  By embedding 

assertions, programmers can establish a set of criteria 

that the program's state must adhere to, providing a 

means to catch and address unexpected behavior or 

deviations from the expected program flow. Their 

adoption, commonly in the form of assert statements, 

has been widespread in programming languages, with 

empirical studies showing that code containing 

assertions has fewer defects (Casalnuovo et al., 2015; 

Counsell et al., 2017; Kochhar & Lo, 2017). 

Frame axioms constitute fundamental elements in 

software specification and verification (Borgida et al., 

1995). They specify which parts of a system's state 

are affected by an operation and which parts remain 

unchanged, often referred to as “and nothing else 

changes.” By formalizing the rules governing state 

changes, frame axioms contribute significantly to the 

correctness and reliability of software systems, 

enabling developers to reason about the behavior of 

their implementations. However, research into the 

runtime checking of frame axioms is relatively 

uncommon, as these properties are usually verified 

statically during program analysis or verification 

(Marché et al., 2004). A runtime-based technique is 

particularly needed for dynamically or gradually 

typed languages such as Dart, where static methods 

may not be sufficient. 

In this paper, we present a simple and practical 

approach to asserting frame properties, alongside 

preconditions and postconditions, in code for runtime 

checks. Our approach uses abstract models and 

executable assertions. Abstract models provide a 

structured representation of a program's state, 

abstracting away intricate implementation details and 

focusing solely on the essential aspects relevant to 

asserting frame properties. By capturing only the 

relevant state elements and their interrelationships, 

abstract models allow us to specify frame axioms in a 

representation-independent way. Embedded directly 

into the code, executable assertions enforce 

constraints on the program’s behavior, ensuring 

adherence to specified frame properties throughout 

program execution. One contribution of our work is 

the formulation of a notion of observable side effects 

at different abstraction levels. We systematically 

define abstract models and associate them with 

executable assertions to detect observable changes to 

the program’s state. Additionally, the use of abstract 

models enhances the readability, maintainability, and 

reusability of assertion code. Overall, our approach 



provides a practical method for asserting frame 

properties to ensure code correctness and reliability. 

The paper is structured as follows. Section 2 

describes the frame problem briefly. Section 3 

explains our approach, detailing the use of abstract 

models and executable. Section 4 provides examples 

of applying our approach to a mobile app written in 

Dart/Flutter, followed by discussions in Section 5. 

Finally, Section 6 discusses related work, and Section 

7 concludes the paper. 

2 THE FRAME PROBLEM 

Assertions, such as assert statements, represent a 

straightforward yet potent means to check the code 

logic during runtime. The following code snippet 

demonstrates the typical use of assertions, illustrating 

their role in a board game operation where a player 

can place a game piece at a specific location on the 

game board. The code is written in Dart/Flutter 

(Flutter, 2024) for a mobile app.  
 

   int playStone(int x, int y, Player player) { 
      assert(0 <= x && x < size && 0 <= y && y < size); 
      assert(isEmpty(x, y)); 
      … 
      assert(playerAt(x, y) == player); 
   } 

 
The first two assertions serve as prerequisites for 

the method, validating the assumptions made about 
its input parameters and the initial state and the last 
assertion scrutinizes the method's behavior, serving 
as its postcondition. This postcondition assertion 
encapsulates the operation's key aspect, which is 
placing a game piece at the specified location. 
However, it is somewhat limited and fails to 
comprehensively assess the method's behavior. 
Consider a scenario where the code inadvertently 
removes an existing piece from another location. 
Implicitly, it assumes that the code refrains from 
altering any other places on the board. These implicit 
or unspecified assumptions can often lead to subtle 
and elusive faults. 

This issue is commonly referred to as frame 

axioms or properties, that specify which properties 

are not changed during the execution of an operation, 

essentially stating that “and nothing else changes” 

(Borgida et al., 1995). 
Assertions are rarely used to check frame axioms 

or properties. For example, the dart:core package of 
the Dart Software Development Kit (SDK) is 
automatically imported into every Dart program to 
provide built-in types, collections, and other core 

functionality. In the Dart SDK version 3.1.2, we 
discovered 30 assertions in the core package within 
16,275 lines of source code (SLOC), resulting in an 
assertion density of 1.84 assertions per 1000 SLOC. 
Among these assertions, 57% are preconditions that 
validate input parameters or initial object states, 33% 
are for checking internal code logic, and 10% are 
postconditions that verify return values or final object 
states. We did not find any assertions specifically 
designed to check frame properties. 

3 OUR APPROACH 

In this section, we describe several coding styles and 

techniques for asserting frame properties, which, in 

practice, can be used in combination. We believe that 

these approaches, although demonstrated in Dart, are 

adaptable to and applicable in other object-oriented 

programming languages. 

3.1 Direct Embedding 

The simplest approach is to embed assertion code 
directly within the operation itself. Specifically, we 
preserve the state of an object before it undergoes 
mutation, enabling comparison with its new state to 
detect any unexpected side effects resulting from the 
operation execution. To achieve this, we clone the 
object in the initial state and store it in a local variable. 
This local variable, introduced solely for assertion 
purposes, is commonly referred to as an “assertion-
only variable” (Cheon, 2022). If no inherent clone 
operation is available for the object, we can construct 
an abstract model of the object using its observer 
operations. For example, let us examine the code 
snippet below, where the embedded frame assertions 
are highlighted in grey boxes. It creates a model of a 
board object represented as a map from pairs of x and 
y indices of locations of the board to a player and 
stores it in an assertion-only variable named model. 

 
void playStone(int x, int y, Player player) { 

     assert(0 <= x && x < size && 0 <= y && y < size); 
     assert(isEmpty(x,y)); 
     // create and store an initial model. 
     var model = <(int, int), Player?>{}; 
     for (var i = 0; i < size; i++) { 
        for (var j = 0; j < size; j++) { 
           model[(i, j)] = playerAt(i, j); 
        } 
     } 
     … 
     assert(playerAt(x, y) == player); 
     // check state changes against the initial model. 
     for (var i = 0; i < size; i++) { 



        for (var j = 0; j < size; j++) { 
          if (!(i == x && j == y)) { 
              assert(model[(i, j)] == playerAt(i, j); 
          } 
        } 
     } 
  } 

 
The assertion code in the final state ensures 

adherence to frame properties, guaranteeing that only 
the player at location (x, y) may undergo mutation. 
This is achieved by referencing the initial value of the 
object stored in an assertion-only local variable. 

The use of an abstract model and observer 
methods enhances the maintainability of assertion 
code significantly, eliminating the need for updates 
when the board's representation changes. However, 
embedding assertion code directly into operations can 
lead to code clutter and diminish the readability and 
reusability of the assertion code. In particular, as the 
frame properties are coded imperatively, it becomes 
less evident which parts of the object may undergo 
changes and which parts must remain unchanged. 

3.2 Assertion Method 

The previous approach often leads to redundant code 
when asserting frame properties across multiple 
methods. To mitigate this issue, we can consolidate 
duplicated logic into helper methods, simplifying the 
encoding of frame axioms. These assertion-only 
methods typically consist of a model getter, a frame 
checker, and a model comparator (refer to the 
example code below). We use a custom annotation 
such as @assertOnly to indicate that these methods 
are solely for writing assertions, not for the 
operational logic of the code. 
 

void playStone(int x, int y, Player player) { 
    assert(0 <= x && x < size && 0 <= y && y < size); 
    assert(isEmpty(x,y)); 
    comparator = (preModel) { // model comparator 
      var postModel = model; // invoke the model getter 
      for (var key in preModel.keys) { 
        if (key != (x, y)) { 
          assert(preModel[key] == postModel[key]); 
        } } }; 
    var checker = frame(model, comparator); 
    … 
    assert(playerAt(x, y) == player); 
    assert(checker()); // call the enclosed comparator 
  } 

 
@assertOnly 
Map<(int, int), Player?> get model { // model getter 
    var result = <(int, int), Player?>{}; 
    for (var i = 0; i < size; i++) { 

      for (var j = 0; j < size; j++) { 
        result[(i, j)] = playerAt(i, j); 
      } 
    } 
    return result; 
} 
 
@assertOnly 
Function frame(model, comparator) { // frame checker 
    return () => comparator(model); // return a closure 
} 

 
The comparator local function serves as a model 

comparator, encoding the frame properties. Intended 
for invocation in the post state, it takes a pre-state 
model and compares it with an internally generated 
post-state model obtained by calling the model getter. 
A model of a board object is obtained by invoking a 
model getter method, essentially functioning an 
abstraction function that maps a concrete program 
state to an abstract assertion state for assertion 
purposes (Cheon, 2022). The assertion-only method, 
frame(), facilitates the checking of the frame 
properties by accepting a pre-state model and a model 
comparator as arguments. It uses a closure to retain 
the pre-state model and invokes the comparator upon 
its invocation in the post-state. Although the example 
defines the model comparator as a local function for 
clarity, it can alternatively be directly coded as an 
argument to the frame() method or can be generalized 
into a helper method for use across multiple methods 
(see Section 3.3). 

While there are some complexities involved due 
to the use of closures and lambda notation, the 
resulting code is cleaner, more maintainable, and 
more reusable compared to the previous approach. 
With the potential to transform the model getter and 
the frame() method into framework methods, the 
process becomes more streamlined. For each method, 
one simply needs to define a model comparator, 
effectively encoding and encapsulating the frame 
axiom of the method. This modular design not only 
simplifies the coding of frame assertions but also 
fosters code consistency and maintainability across 
multiple methods within a class. 

3.3 Assertion Class 

Building upon the previous approach, we can make 
further improvements by consolidating most of the 
assertion code into a dedicated assertion-only helper 
class. This class serves as a container for an abstract 
model of the asserted class, alongside operations for 
defining and validating frame properties. 

 
void playStone(int x, int y, Player player) { 
    assert(0 <= x && x < size && 0 <= y && y < size); 



    assert(isEmpty(x,y)); 
    var preModel = BoardModel(this)..frame([(x, y)]); 
    … 
    assert(playerAt(x, y) == player); 
    assert(preModel == BoardModel(this));  

} 
 

@assertOnly 
class BoardModel { 

late final places; 
var _coords = const []; 
BoardModel(Board board) {     
    for (var i = 0; i < board.size; i++) { 
        for (var j = 0; j < board.size; j++) { 
          places[(i, j)] = board.playerAt(i, j); 
        } 
    } 
} 
 
void frame([coords = const []]) => _coords = coords; 
 
@override 
bool operator ==(other) { 
    if (other is _BoardModel) { 
      for (var key in places.keys) { 
        if (!_coords.contains(key)) { 
          places[key] == other.places[key]; 
        } 
      } 
      return true; 
    } 
    return false; 
} 

} 
 

In this approach, assertions become concise and 
clear as frame logic is encapsulated within the helper 
class named BoardModel and the frame properties are 
written as expressions to have a declarative flavor. As 
before, a pre-state model is created in the initial state, 
and frame properties are subsequently defined. 
Leveraging the Dart cascade notation (..) proves 
useful for combining the creation of an abstract model 
and the specification of frame properties into a single 
expression. Frame properties are specified by 
providing a list of place coordinates through the 
frame() method. In the post state, the pre-state model 
is compared with the post-state model to ensure the 
specified frame properties. The comparison is done 
by invoking the overridden equality operator (==), 
which compares only those places on the board that 
must remain unchanged. 

3.3.1 Wildcard Object 

The equality operator (==) of the model class plays a 
crucial role by identifying the parts of the object that 

may change and ignoring them during comparison. 
To enhance reusability and versatility of the 
approach, we can introduce a special wildcard object, 
say BoardModel.any, which equates to any object and 
can be directly assigned to the parts of the object 
where changes are allowed. Its equality operator 
always returns true regardless of the argument. Frame 
properties can be directly coded by assigning this 
special object to the parts of the object allowed to 
change in a model. For example, preModel.places[(x, 
y)] = BoardModel.any indicates that the position (x, 
y) can be modified, as its value will match any object. 
Additionally, a frame() helper method can be defined 
to take a set of place coordinates and mutate the object 
accordingly by assigning the wildcard object. Of 
course, the equality operator of a model class is 
overridden to compare two model objects, part by 
part. In a sense, a pre-state model serves as a pattern 
that a post-state model must conform to. This 
approach offers a more flexible and scalable solution 
for specifying frame properties, while also providing 
the potential for creating a supporting library or 
framework. 

3.3.2 Pattern, Path, and Declarative Style 

Instead of manually coding wildcard assignments to 
denote parts of an object allowed to change, a more 
preferred approach would be to declare these parts 
explicitly. That is, we can support a declarative style 
to specify mutable parts of an object. For example, if 
we want to specify a specific column of a board, we 
can call the frame() method like preModel.frame([(x, 
'*')]). Here, the frame() method would assign the 
wildcard object to every place in the x column of the 
board model. To generalize this approach and create 
a framework method, we believe we can employ 
patterns, path expressions, or regular expressions to 
specify sets of object parts declaratively. The frame() 
method can then be implemented using the reflection 
facility to parse the specification of frame properties 
and update the model accordingly with the wildcard 
object. This method not only enhances readability but 
also allows for a more flexible and concise 
specification of frame properties. 

3.4 Annotation 

Annotations can offer a clear and concise means of 
specifying frame axioms. One way to utilize 
annotations for specifying frame axioms is by 
defining a custom annotation. This custom annotation 
can be applied to methods or classes to indicate which 
parts of the object may be changed or should remain 
unchanged during the execution of the methods. 
Below is an example: 

 



  @frame("[(x,y)]")  
void playStone(int x, int y, Player player) { 

    assert(0 <= x && x < size && 0 <= y && y < size); 
    assert(isEmpty(x,y)); 
    … 
    assert(playerAt(x, y) == player); 

} 
 
@assertOnly 
Map<(int, int), Player?> get model { … } 

 
The custom @frame annotation is applied to the 

playStone() method, specifying that the model[(x,y)] 
may be changed during the execution of the method 
but all other parts of the model should remain 
unchanged.   

The annotation can be processed during compile 
time or at runtime to ensure that the specified frame 
properties are respected during method execution. 
This can involve reflection to inspect the annotations 
and validate the frame properties accordingly. For 
example, the above annotation can be translated into 
the following code by following the assertion method 
approach described in Section 3.2: 

 
void playStone(int x, int y, Player player) { 

    assert(0 <= x && x < size && 0 <= y && y < size); 
    assert(isEmpty(x,y)); 
    var axiom = frame(model, (pre) { 
      var post = this.model; 
      for (var key in pre.keys) { 
        if (key != (x, y)) { 
          assert(pre[key] == post[key]); 
        } 
      } 
    }); 
    … 
    assert(playerAt(x, y) == player); 
    assert(axiom());  

} 

4 MORE EXAMPLES 

Another core operation of the Board class is to 
determine whether the board has a winning 
configuration for a player. The isWonBy() method 
performs this check with the assistance of a helper 
method, and the specifications of their frame 
properties shown below are interesting. 

  (bool, List<(int, int)>) isWonBy(Player player) { 
     var preModel = model;  
     … 
     assert(preModel == model);  
     return …; 
  } 

 
  bool _isWonBy(Player player, int x, int y, int dx, int dy) { 
  assert(0 <= x && x < size && 0 <= y && y < size); 
  assert({-1, 0, 1}.containsAll({dx, dy})); 

     var preModel = (model, BoardModel.any); 
     … 
     assert(preModel == (model, _winSeq);  
     return …; 
  } 
 

The isWonBy() method identifies an unbroken 
horizontal, vertical, or diagonal row of five stones 
belonging to the given player and returns it as a 
winning sequence. The assertion of its frame 
properties is typical in that it shouldn’t produce any 
side effects. However, its implementation does entail 
side effects by invoking a series of calls to the 
_isWonBy() helper method. This helper method 
verifies if there is a winning sequence containing the 
specified place (x and y) in the given direction (dx and 
dy). It may modify the _winSeq private field to 
remember the winning sequence found. 

Abstract models facilitate the decision-making 
process and coding of whether this state change 
should be considered part of the frame properties of 
methods. For instance, it isn’t part of the frame 
properties of the isWonBy() method, as the side effect 
isn’t observable by the method's client. This decision 
results in more maintainable and reusable frame 
assertions. Conversely, it is part of the frame 
properties of the helper method, as its client can 
observe and rely on this side effect. Our decision is 
grounded in the perspective of viewing frame 
properties as contracts between the implementor and 
the client. In summary, the use of abstract models 
enables us to codify the notion of “observable” side 
effects when formulating frame properties. 

As hinted above, the use of abstract models 
reveals a compositional nature, wherein the model of 
a composite object can be constructed by composing 
the models of its component objects. Consider the 
Game class, whose instances comprise a board and 
two players. 

 
  class Game { 
     final Board board; 
     final List<Player> _players; 
     Player _current; 
     … 
     GameModel get model = GameModel(board, 
       (_current, _players.firstWhere((p) => p != _current)); 
  } 

 
We adopt a tuple view of an object’s states. A 

game object's abstract model is represented as a tuple 
containing the board and its two players. It also 



abstracts from the representation of the current 
player. An intriguing design consideration arises 
when determining whether to utilize a part object or 
its abstract model in defining the model of the 
composite object (refer to Section 5). 

From a frame perspective, methods within the 
Game class can be classified into four categories 
based on their potential side effects: observers and 
three kinds of mutators that may alter (a) only the 
board, (b) only the players, and (c) both the board and 
players. For instance, one responsibility of the Game 
class is to manage the turns of the players. 

 
  Player changeTurn() { 
     var preModel = model..frame({'players'});  
     … 
     assert(preModel == model);  
     return _current; 

} 
 
The changeTurn() method is expected to modify 

only the players, leaving the board unaffected. The 
frame() method of the model class serves to designate 
the parts of the object that may undergo changes, 
replacing them with a wildcard object that is 
equivalent to any object. Consequently, the 
overridden equality operator (==) of the model class 
ensures the equality of parts not marked as 
changeable. The frame properties of other kinds of 
mutation methods can be asserted similarly. 

5 DISCUSSION 

We performed a preliminary evaluation of our 
approach through a small case study involving the 
board game Omok, also known as Gomoku or 
Gobang. This strategic two-player game, “five 
pieces” in meaning, is traditionally played on a 15x15 
grid where players take turns placing stones to form 
unbroken rows of five, either vertically, horizontally, 
or diagonally. We developed a cross-platform mobile 
app using Dart/Flutter (Flutter, 2024) comprising 
widget classes, UI-dependent model classes, and pure 
model classes, with our primary focus on the latter, 
including Board, Player, and Game classes.  

Our implementation of the three classes consists 
of 256 lines of source code (SLOC) including 
comments, containing 21 methods. We ensured the 
assertion of frame properties for each method, 
employing a combination of approaches described in 
Section 3, excluding annotations. Although it is 
uncommon to assert frame properties for every 
method in practice, doing so serves as an instructive 
exercise for comparison and evaluation purposes. 

We followed a straightforward process: (a) 
identifying the parts of the object susceptible to 

change by a method and observable by clients, (b) 
defining an abstract model consisting of only the 
observable parts, (c) implementing a model getter 
and, if needed, a model class to define a frame method 
and override the equality. This process was iteratively 
applied to refine the model getter and the model class 
for several representative mutation methods. Once the 
abstract model was formulated, asserting frame 
properties for methods became straightforward. 

The process of adding frame assertions to all 
methods significantly increased the size complexity, 
expanding the source code from 256 to 408 SLOC, 
representing 59% overhead in SLOC. For example, a 
concise one-line method like playerAt() in lambda 
notation (see below) expanded to six lines in block 
notation to integrate frame assertions. Among the 21 
methods, 12 (57%) are observers that do not alter the 
object state. Among the remaining methods, 6 (29%) 
modify only a single element of the composite model, 
2 (10%) alter two elements, and 1 (5%) affects three 
elements. In summary, a significant number of 
methods exhibit either no side effects or side effects 
only on a single element. This underscores the 
necessity for some level of automation to facilitate 
widespread and practical adoption. As proposed 
earlier, an annotation-driven approach presents a 
promising avenue. Given that 57% of methods serve 
as observers, many of which are succinctly expressed 
in lambda notation, introducing a custom annotation 
like @observer could prove invaluable. This 
annotation could then automatically trigger the 
insertion of assertion code, as annotations are good to 
partially replace the time-consuming and error-prone 
process of implementing code (Yu et al., 2019). 

 
@observer 
Player? playerAt(int x, int y) => _places[x * size + y]; 

 
class Game { 
   @model 

     final Board board; 
     @model("self.firstWhere(p) => p != _current)") 
     final List<Player> _players; 
     … 

} 
 

We also believe that a model getter and a model 
class can also be created using custom annotations, as 
shown above. The @model annotation can specify 
that a field or group of fields should be abstracted into 
an abstract model, with an optionally specified 
abstraction function. Once all elements or parts of a 
model are known, the annotation processor can 
generate the frame method and override the equality 
operator accordingly. 

As outlined in the previous section, our approach 
to defining abstract models for classes and utilizing 



them in asserting frame properties follows a 
compositional strategy. Abstract models of classes, 
such as the Game class, can be constructed by 
composing their component or part objects. An 
intriguing question arises when composing objects to 
define an abstract model: should we compose the 
objects themselves or their abstract models? This 
question also pertains to comparing the initial and 
final states of an object to detect state changes and 
violation of frame properties. 

Most object-oriented programming languages, 
including Dart, support two different notions of 
equality: reference equality and value equality. The 
coexistence of these two notions of object equality 
can present challenges when formulating and 
asserting frame properties. There is no strict rule 
governing their usage; instead, it depends on several 
factors such as object sharing and ownership. As a 
general guideline, value composition and equality are 
typically employed when the parts are encapsulated 
and not directly visible to the client, while reference 
composition and equality are preferred for parts that 
are shared and directly visible to the client. In the 
Game class, both the board and two players are 
exposed and visible to clients. Therefore, we opted 
for reference composition and equality for most 
methods. However, we found one method where 
value composition works better. 
 
Outcome makeMove(int x, int y) { 
   var preModel = (_board.model..frame([(x, y)]), any);   
   _board.placeStone(x, y, _currentPlayer); 

     … 
     assert(preModel == (_board.model, modelPlayers)); 
     return …; 

} 
 
@assertOnly 
get modelPlayers => (_currentPlayer, /* opponent */); 
 

The makeMove() method implements the logic for 
the current player’s next move by placing a stone on 
the specified place. It also updates the turn to the next 
player if the move does not result in a gaming-ending 
scenario, such as a winning move. Hence, it has the 
potential to modify both the board and the players’ 
aspects of the game. However, since it might only 
change a specific place of the board, it would be 
advantageous to create a game model as a 
composition of the board’s model, rather than the 
board object itself, as demonstrated above.  

In our examples, we considered only the state 
changes of the receiver object. However, a method 
can access other objects, including parameters. 
Therefore, the state can be defined as a combination 
of the receiver and operation-specific state, 
representing a universe of objects accessible during 

method execution. In other words, the state accessible 
to a method includes not only the state of the receiver 
object but also additional state components accessed 
via parameters and global references. While the 
receiver remains constant across all methods within a 
class, other components may vary depending on the 
specific method in question. A limitation of our 
approach is that the programmer must specify this 
state information for each method as part of the frame 
axioms. It may be necessary to define multiple model 
getters or abstraction functions, including those 
tailored for various parts of the object. 

Another caveat of our approach is that it allows 
intermediate changes, as only the final state is 
checked. While this has no impact in a sequential 
environment, it may be significant in a concurrent 
environment where intermediate changes can be 
visible to the client.  

6 RELATED WORK 

Frame axioms are foundational elements in formal 
specification languages, precisely specifying which 
parts of a system's state are impacted by an operation 
and which remain unaffected (Borgida et al., 1995). 
In behavioral interface specification languages like 
Larch (Guttag & Horning, 1993), JML (Leavens et al, 
2005), and Spec# (Leino & Müller, 2007), frame 
axioms define the interface contracts of software 
components, including preconditions, postconditions, 
class invariants, and frame properties. Special 
constructs such as modifies and assignable clauses 
specify which variables or fields may be modified by 
methods, serving as frame axioms that specify the 
parts of an object's state subject to change during 
method execution (Chalin et al., 2005). Fields can 
also be grouped for writing frame properties (Leino, 
1998). However, research into runtime checking of 
frame axioms is relatively uncommon, as these 
properties are usually verified statically during 
program analysis or verification (Marché et al., 
2004). Consequently, our work stands out by offering 
a quick, straightforward, and practical solution to 
ensure frame properties with executable assertions.  

The use of abstract functions, pioneered by Hoare 
in formal program verification (Hoare, 1972), appears 
in behavioral interface specification languages such 
as JML and Spec# in the form of model variables – 
specification-only variables whose values are defined 
and calculated in terms of concrete program variables 
and states (Cheon et al., 2005). It was also suggested 
to write executable assertions abstractly by mapping 
a program state into an abstract assertion state or 
model through the provision of an abstract function 
(Cheon, 2022). This approach proves particularly 
beneficial for writing design assertions – constraints 



and decisions translated from design that must be held 
regardless of concrete representation choices, such as 
data structures. The resulting assertions become not 
only more understandable but also more maintainable 
and reusable (Cheon, 2022; Cheon, 2024). Our 
approach aligns with this strategy and facilitates the 
translation of frame axioms and properties into 
executable assertions, in addition to pre and 
postconditions. The use of assertion-only immutable 
collection classes to create abstract models should 
equally apply to our approach (Cheon, 2023). 
Moreover, the utilization of abstract models in our 
approach allows for formulating the notion of 
observable side effects at different abstraction levels. 

7 CONCLUSION 

Our work has shown the potential of frame axioms 
and properties as practical tools for programmers. By 
employing abstract models and executable assertions, 
we provided a systematic and effective coding style 
and technique for asserting frame properties, along 
with pre and postconditions, in software 
development. This approach not only enhances the 
readability, maintainability, and reusability of 
assertion code but also enables the formulation of 
observable side effects at different abstraction levels. 
While research into the runtime checking of frame 
axioms remains relatively uncommon, our work 
stands out by offering a straightforward and practical 
solution for ensuring frame properties through 
executable assertions. Further exploration and 
refinement of our approach, especially through 
annotation-based automation, could pave the way for 
more robust and reliable software development 
practices. 
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