
Asserting Frame Properties

Yoonsik Cheon1, Bozhen Liu2 and Carlos Rubio-Medrano2
1Department of Computer Science, The University of Texas at El Paso, El Paso, Texas, U.S.A.

2Department of Computer Science, Texas A&M University – Corpus Christi, Corpus Christi, Texas, U.S.A.

ycheon@utep.edu, {bozhen.liu, carlos.rubiomedrano}@tamucc.edu

Keywords: Abstraction function, assertion, frame axiom, runtime check, side effect.

Abstract: Frame axioms and properties are crucial for ensuring the correctness of operations by defining which parts of

a program’s state may change during operation execution. Despite their significance, there has been no known

method for asserting frame properties of operations for runtime checks. This paper introduces a practical

approach that utilizes abstract models and executable assertions to effectively check frame properties at

runtime. By defining abstract models that capture relevant state variables and their relationships, programmers

can specify abstractly the parts of an object's state that may change during operation execution. These frame

properties, specified in terms of abstract models and embedded as executable assertions within the code,

enforce behavioral constraints and improve the readability, maintainability, and reusability of the assertion

code. Additionally, the approach supports the concept of observable side effects.

1 INTRODUCTION

In programming, assertions serve as practical tools

for ensuring the correctness and reliability of code.

These assertions allow programmers to express

conditions that must hold true at specific points in the

code, serving as checkpoints to detect and diagnose

errors during debugging and testing phases

(Matuszek, 1976; Rosenblum, 1995). By embedding

assertions, programmers can establish a set of criteria

that the program's state must adhere to, providing a

means to catch and address unexpected behavior or

deviations from the expected program flow. Their

adoption, commonly in the form of assert statements,

has been widespread in programming languages, with

empirical studies showing that code containing

assertions has fewer defects (Casalnuovo et al., 2015;

Counsell et al., 2017; Kochhar & Lo, 2017).

Frame axioms constitute fundamental elements in

software specification and verification (Borgida et al.,

1995). They specify which parts of a system's state

are affected by an operation and which parts remain

unchanged, often referred to as “and nothing else

changes.” By formalizing the rules governing state

changes, frame axioms contribute significantly to the

correctness and reliability of software systems,

enabling developers to reason about the behavior of

their implementations. However, research into the

runtime checking of frame axioms is relatively

uncommon, as these properties are usually verified

statically during program analysis or verification

(Marché et al., 2004). A runtime-based technique is

particularly needed for dynamically or gradually

typed languages such as Dart, where static methods

may not be sufficient.

In this paper, we present a simple and practical

approach to asserting frame properties, alongside

preconditions and postconditions, in code for runtime

checks. Our approach uses abstract models and

executable assertions. Abstract models provide a

structured representation of a program's state,

abstracting away intricate implementation details and

focusing solely on the essential aspects relevant to

asserting frame properties. By capturing only the

relevant state elements and their interrelationships,

abstract models allow us to specify frame axioms in a

representation-independent way. Embedded directly

into the code, executable assertions enforce

constraints on the program’s behavior, ensuring

adherence to specified frame properties throughout

program execution. One contribution of our work is

the formulation of a notion of observable side effects

at different abstraction levels. We systematically

define abstract models and associate them with

executable assertions to detect observable changes to

the program’s state. Additionally, the use of abstract

models enhances the readability, maintainability, and

reusability of assertion code. Overall, our approach

provides a practical method for asserting frame

properties to ensure code correctness and reliability.

The paper is structured as follows. Section 2

describes the frame problem briefly. Section 3

explains our approach, detailing the use of abstract

models and executable. Section 4 provides examples

of applying our approach to a mobile app written in

Dart/Flutter, followed by discussions in Section 5.

Finally, Section 6 discusses related work, and Section

7 concludes the paper.

2 THE FRAME PROBLEM

Assertions, such as assert statements, represent a

straightforward yet potent means to check the code

logic during runtime. The following code snippet

demonstrates the typical use of assertions, illustrating

their role in a board game operation where a player

can place a game piece at a specific location on the

game board. The code is written in Dart/Flutter

(Flutter, 2024) for a mobile app.

 int playStone(int x, int y, Player player) {
 assert(0 <= x && x < size && 0 <= y && y < size);
 assert(isEmpty(x, y));
 …
 assert(playerAt(x, y) == player);
 }

The first two assertions serve as prerequisites for

the method, validating the assumptions made about
its input parameters and the initial state and the last
assertion scrutinizes the method's behavior, serving
as its postcondition. This postcondition assertion
encapsulates the operation's key aspect, which is
placing a game piece at the specified location.
However, it is somewhat limited and fails to
comprehensively assess the method's behavior.
Consider a scenario where the code inadvertently
removes an existing piece from another location.
Implicitly, it assumes that the code refrains from
altering any other places on the board. These implicit
or unspecified assumptions can often lead to subtle
and elusive faults.

This issue is commonly referred to as frame

axioms or properties, that specify which properties

are not changed during the execution of an operation,

essentially stating that “and nothing else changes”

(Borgida et al., 1995).
Assertions are rarely used to check frame axioms

or properties. For example, the dart:core package of
the Dart Software Development Kit (SDK) is
automatically imported into every Dart program to
provide built-in types, collections, and other core

functionality. In the Dart SDK version 3.1.2, we
discovered 30 assertions in the core package within
16,275 lines of source code (SLOC), resulting in an
assertion density of 1.84 assertions per 1000 SLOC.
Among these assertions, 57% are preconditions that
validate input parameters or initial object states, 33%
are for checking internal code logic, and 10% are
postconditions that verify return values or final object
states. We did not find any assertions specifically
designed to check frame properties.

3 OUR APPROACH

In this section, we describe several coding styles and

techniques for asserting frame properties, which, in

practice, can be used in combination. We believe that

these approaches, although demonstrated in Dart, are

adaptable to and applicable in other object-oriented

programming languages.

3.1 Direct Embedding

The simplest approach is to embed assertion code
directly within the operation itself. Specifically, we
preserve the state of an object before it undergoes
mutation, enabling comparison with its new state to
detect any unexpected side effects resulting from the
operation execution. To achieve this, we clone the
object in the initial state and store it in a local variable.
This local variable, introduced solely for assertion
purposes, is commonly referred to as an “assertion-
only variable” (Cheon, 2022). If no inherent clone
operation is available for the object, we can construct
an abstract model of the object using its observer
operations. For example, let us examine the code
snippet below, where the embedded frame assertions
are highlighted in grey boxes. It creates a model of a
board object represented as a map from pairs of x and
y indices of locations of the board to a player and
stores it in an assertion-only variable named model.

void playStone(int x, int y, Player player) {

 assert(0 <= x && x < size && 0 <= y && y < size);
 assert(isEmpty(x,y));
 // create and store an initial model.
 var model = <(int, int), Player?>{};
 for (var i = 0; i < size; i++) {
 for (var j = 0; j < size; j++) {
 model[(i, j)] = playerAt(i, j);
 }
 }
 …
 assert(playerAt(x, y) == player);
 // check state changes against the initial model.
 for (var i = 0; i < size; i++) {

 for (var j = 0; j < size; j++) {
 if (!(i == x && j == y)) {
 assert(model[(i, j)] == playerAt(i, j);
 }
 }
 }
 }

The assertion code in the final state ensures

adherence to frame properties, guaranteeing that only
the player at location (x, y) may undergo mutation.
This is achieved by referencing the initial value of the
object stored in an assertion-only local variable.

The use of an abstract model and observer
methods enhances the maintainability of assertion
code significantly, eliminating the need for updates
when the board's representation changes. However,
embedding assertion code directly into operations can
lead to code clutter and diminish the readability and
reusability of the assertion code. In particular, as the
frame properties are coded imperatively, it becomes
less evident which parts of the object may undergo
changes and which parts must remain unchanged.

3.2 Assertion Method

The previous approach often leads to redundant code
when asserting frame properties across multiple
methods. To mitigate this issue, we can consolidate
duplicated logic into helper methods, simplifying the
encoding of frame axioms. These assertion-only
methods typically consist of a model getter, a frame
checker, and a model comparator (refer to the
example code below). We use a custom annotation
such as @assertOnly to indicate that these methods
are solely for writing assertions, not for the
operational logic of the code.

void playStone(int x, int y, Player player) {
 assert(0 <= x && x < size && 0 <= y && y < size);
 assert(isEmpty(x,y));
 comparator = (preModel) { // model comparator
 var postModel = model; // invoke the model getter
 for (var key in preModel.keys) {
 if (key != (x, y)) {
 assert(preModel[key] == postModel[key]);
 } } };
 var checker = frame(model, comparator);
 …
 assert(playerAt(x, y) == player);
 assert(checker()); // call the enclosed comparator
 }

@assertOnly
Map<(int, int), Player?> get model { // model getter
 var result = <(int, int), Player?>{};
 for (var i = 0; i < size; i++) {

 for (var j = 0; j < size; j++) {
 result[(i, j)] = playerAt(i, j);
 }
 }
 return result;
}

@assertOnly
Function frame(model, comparator) { // frame checker
 return () => comparator(model); // return a closure
}

The comparator local function serves as a model

comparator, encoding the frame properties. Intended
for invocation in the post state, it takes a pre-state
model and compares it with an internally generated
post-state model obtained by calling the model getter.
A model of a board object is obtained by invoking a
model getter method, essentially functioning an
abstraction function that maps a concrete program
state to an abstract assertion state for assertion
purposes (Cheon, 2022). The assertion-only method,
frame(), facilitates the checking of the frame
properties by accepting a pre-state model and a model
comparator as arguments. It uses a closure to retain
the pre-state model and invokes the comparator upon
its invocation in the post-state. Although the example
defines the model comparator as a local function for
clarity, it can alternatively be directly coded as an
argument to the frame() method or can be generalized
into a helper method for use across multiple methods
(see Section 3.3).

While there are some complexities involved due
to the use of closures and lambda notation, the
resulting code is cleaner, more maintainable, and
more reusable compared to the previous approach.
With the potential to transform the model getter and
the frame() method into framework methods, the
process becomes more streamlined. For each method,
one simply needs to define a model comparator,
effectively encoding and encapsulating the frame
axiom of the method. This modular design not only
simplifies the coding of frame assertions but also
fosters code consistency and maintainability across
multiple methods within a class.

3.3 Assertion Class

Building upon the previous approach, we can make
further improvements by consolidating most of the
assertion code into a dedicated assertion-only helper
class. This class serves as a container for an abstract
model of the asserted class, alongside operations for
defining and validating frame properties.

void playStone(int x, int y, Player player) {
 assert(0 <= x && x < size && 0 <= y && y < size);

 assert(isEmpty(x,y));
 var preModel = BoardModel(this)..frame([(x, y)]);
 …
 assert(playerAt(x, y) == player);
 assert(preModel == BoardModel(this));

}

@assertOnly
class BoardModel {

late final places;
var _coords = const [];
BoardModel(Board board) {
 for (var i = 0; i < board.size; i++) {
 for (var j = 0; j < board.size; j++) {
 places[(i, j)] = board.playerAt(i, j);
 }
 }
}

void frame([coords = const []]) => _coords = coords;

@override
bool operator ==(other) {
 if (other is _BoardModel) {
 for (var key in places.keys) {
 if (!_coords.contains(key)) {
 places[key] == other.places[key];
 }
 }
 return true;
 }
 return false;
}

}

In this approach, assertions become concise and
clear as frame logic is encapsulated within the helper
class named BoardModel and the frame properties are
written as expressions to have a declarative flavor. As
before, a pre-state model is created in the initial state,
and frame properties are subsequently defined.
Leveraging the Dart cascade notation (..) proves
useful for combining the creation of an abstract model
and the specification of frame properties into a single
expression. Frame properties are specified by
providing a list of place coordinates through the
frame() method. In the post state, the pre-state model
is compared with the post-state model to ensure the
specified frame properties. The comparison is done
by invoking the overridden equality operator (==),
which compares only those places on the board that
must remain unchanged.

3.3.1 Wildcard Object

The equality operator (==) of the model class plays a
crucial role by identifying the parts of the object that

may change and ignoring them during comparison.
To enhance reusability and versatility of the
approach, we can introduce a special wildcard object,
say BoardModel.any, which equates to any object and
can be directly assigned to the parts of the object
where changes are allowed. Its equality operator
always returns true regardless of the argument. Frame
properties can be directly coded by assigning this
special object to the parts of the object allowed to
change in a model. For example, preModel.places[(x,
y)] = BoardModel.any indicates that the position (x,
y) can be modified, as its value will match any object.
Additionally, a frame() helper method can be defined
to take a set of place coordinates and mutate the object
accordingly by assigning the wildcard object. Of
course, the equality operator of a model class is
overridden to compare two model objects, part by
part. In a sense, a pre-state model serves as a pattern
that a post-state model must conform to. This
approach offers a more flexible and scalable solution
for specifying frame properties, while also providing
the potential for creating a supporting library or
framework.

3.3.2 Pattern, Path, and Declarative Style

Instead of manually coding wildcard assignments to
denote parts of an object allowed to change, a more
preferred approach would be to declare these parts
explicitly. That is, we can support a declarative style
to specify mutable parts of an object. For example, if
we want to specify a specific column of a board, we
can call the frame() method like preModel.frame([(x,
'*')]). Here, the frame() method would assign the
wildcard object to every place in the x column of the
board model. To generalize this approach and create
a framework method, we believe we can employ
patterns, path expressions, or regular expressions to
specify sets of object parts declaratively. The frame()
method can then be implemented using the reflection
facility to parse the specification of frame properties
and update the model accordingly with the wildcard
object. This method not only enhances readability but
also allows for a more flexible and concise
specification of frame properties.

3.4 Annotation

Annotations can offer a clear and concise means of
specifying frame axioms. One way to utilize
annotations for specifying frame axioms is by
defining a custom annotation. This custom annotation
can be applied to methods or classes to indicate which
parts of the object may be changed or should remain
unchanged during the execution of the methods.
Below is an example:

 @frame("[(x,y)]")
void playStone(int x, int y, Player player) {

 assert(0 <= x && x < size && 0 <= y && y < size);
 assert(isEmpty(x,y));
 …
 assert(playerAt(x, y) == player);

}

@assertOnly
Map<(int, int), Player?> get model { … }

The custom @frame annotation is applied to the

playStone() method, specifying that the model[(x,y)]
may be changed during the execution of the method
but all other parts of the model should remain
unchanged.

The annotation can be processed during compile
time or at runtime to ensure that the specified frame
properties are respected during method execution.
This can involve reflection to inspect the annotations
and validate the frame properties accordingly. For
example, the above annotation can be translated into
the following code by following the assertion method
approach described in Section 3.2:

void playStone(int x, int y, Player player) {

 assert(0 <= x && x < size && 0 <= y && y < size);
 assert(isEmpty(x,y));
 var axiom = frame(model, (pre) {
 var post = this.model;
 for (var key in pre.keys) {
 if (key != (x, y)) {
 assert(pre[key] == post[key]);
 }
 }
 });
 …
 assert(playerAt(x, y) == player);
 assert(axiom());

}

4 MORE EXAMPLES

Another core operation of the Board class is to
determine whether the board has a winning
configuration for a player. The isWonBy() method
performs this check with the assistance of a helper
method, and the specifications of their frame
properties shown below are interesting.

 (bool, List<(int, int)>) isWonBy(Player player) {
 var preModel = model;
 …
 assert(preModel == model);
 return …;
 }

 bool _isWonBy(Player player, int x, int y, int dx, int dy) {
 assert(0 <= x && x < size && 0 <= y && y < size);
 assert({-1, 0, 1}.containsAll({dx, dy}));

 var preModel = (model, BoardModel.any);
 …
 assert(preModel == (model, _winSeq);
 return …;
 }

The isWonBy() method identifies an unbroken
horizontal, vertical, or diagonal row of five stones
belonging to the given player and returns it as a
winning sequence. The assertion of its frame
properties is typical in that it shouldn’t produce any
side effects. However, its implementation does entail
side effects by invoking a series of calls to the
_isWonBy() helper method. This helper method
verifies if there is a winning sequence containing the
specified place (x and y) in the given direction (dx and
dy). It may modify the _winSeq private field to
remember the winning sequence found.

Abstract models facilitate the decision-making
process and coding of whether this state change
should be considered part of the frame properties of
methods. For instance, it isn’t part of the frame
properties of the isWonBy() method, as the side effect
isn’t observable by the method's client. This decision
results in more maintainable and reusable frame
assertions. Conversely, it is part of the frame
properties of the helper method, as its client can
observe and rely on this side effect. Our decision is
grounded in the perspective of viewing frame
properties as contracts between the implementor and
the client. In summary, the use of abstract models
enables us to codify the notion of “observable” side
effects when formulating frame properties.

As hinted above, the use of abstract models
reveals a compositional nature, wherein the model of
a composite object can be constructed by composing
the models of its component objects. Consider the
Game class, whose instances comprise a board and
two players.

 class Game {
 final Board board;
 final List<Player> _players;
 Player _current;
 …
 GameModel get model = GameModel(board,
 (_current, _players.firstWhere((p) => p != _current));
 }

We adopt a tuple view of an object’s states. A

game object's abstract model is represented as a tuple
containing the board and its two players. It also

abstracts from the representation of the current
player. An intriguing design consideration arises
when determining whether to utilize a part object or
its abstract model in defining the model of the
composite object (refer to Section 5).

From a frame perspective, methods within the
Game class can be classified into four categories
based on their potential side effects: observers and
three kinds of mutators that may alter (a) only the
board, (b) only the players, and (c) both the board and
players. For instance, one responsibility of the Game
class is to manage the turns of the players.

 Player changeTurn() {
 var preModel = model..frame({'players'});
 …
 assert(preModel == model);
 return _current;

}

The changeTurn() method is expected to modify

only the players, leaving the board unaffected. The
frame() method of the model class serves to designate
the parts of the object that may undergo changes,
replacing them with a wildcard object that is
equivalent to any object. Consequently, the
overridden equality operator (==) of the model class
ensures the equality of parts not marked as
changeable. The frame properties of other kinds of
mutation methods can be asserted similarly.

5 DISCUSSION

We performed a preliminary evaluation of our
approach through a small case study involving the
board game Omok, also known as Gomoku or
Gobang. This strategic two-player game, “five
pieces” in meaning, is traditionally played on a 15x15
grid where players take turns placing stones to form
unbroken rows of five, either vertically, horizontally,
or diagonally. We developed a cross-platform mobile
app using Dart/Flutter (Flutter, 2024) comprising
widget classes, UI-dependent model classes, and pure
model classes, with our primary focus on the latter,
including Board, Player, and Game classes.

Our implementation of the three classes consists
of 256 lines of source code (SLOC) including
comments, containing 21 methods. We ensured the
assertion of frame properties for each method,
employing a combination of approaches described in
Section 3, excluding annotations. Although it is
uncommon to assert frame properties for every
method in practice, doing so serves as an instructive
exercise for comparison and evaluation purposes.

We followed a straightforward process: (a)
identifying the parts of the object susceptible to

change by a method and observable by clients, (b)
defining an abstract model consisting of only the
observable parts, (c) implementing a model getter
and, if needed, a model class to define a frame method
and override the equality. This process was iteratively
applied to refine the model getter and the model class
for several representative mutation methods. Once the
abstract model was formulated, asserting frame
properties for methods became straightforward.

The process of adding frame assertions to all
methods significantly increased the size complexity,
expanding the source code from 256 to 408 SLOC,
representing 59% overhead in SLOC. For example, a
concise one-line method like playerAt() in lambda
notation (see below) expanded to six lines in block
notation to integrate frame assertions. Among the 21
methods, 12 (57%) are observers that do not alter the
object state. Among the remaining methods, 6 (29%)
modify only a single element of the composite model,
2 (10%) alter two elements, and 1 (5%) affects three
elements. In summary, a significant number of
methods exhibit either no side effects or side effects
only on a single element. This underscores the
necessity for some level of automation to facilitate
widespread and practical adoption. As proposed
earlier, an annotation-driven approach presents a
promising avenue. Given that 57% of methods serve
as observers, many of which are succinctly expressed
in lambda notation, introducing a custom annotation
like @observer could prove invaluable. This
annotation could then automatically trigger the
insertion of assertion code, as annotations are good to
partially replace the time-consuming and error-prone
process of implementing code (Yu et al., 2019).

@observer
Player? playerAt(int x, int y) => _places[x * size + y];

class Game {
 @model

 final Board board;
 @model("self.firstWhere(p) => p != _current)")
 final List<Player> _players;
 …

}

We also believe that a model getter and a model
class can also be created using custom annotations, as
shown above. The @model annotation can specify
that a field or group of fields should be abstracted into
an abstract model, with an optionally specified
abstraction function. Once all elements or parts of a
model are known, the annotation processor can
generate the frame method and override the equality
operator accordingly.

As outlined in the previous section, our approach
to defining abstract models for classes and utilizing

them in asserting frame properties follows a
compositional strategy. Abstract models of classes,
such as the Game class, can be constructed by
composing their component or part objects. An
intriguing question arises when composing objects to
define an abstract model: should we compose the
objects themselves or their abstract models? This
question also pertains to comparing the initial and
final states of an object to detect state changes and
violation of frame properties.

Most object-oriented programming languages,
including Dart, support two different notions of
equality: reference equality and value equality. The
coexistence of these two notions of object equality
can present challenges when formulating and
asserting frame properties. There is no strict rule
governing their usage; instead, it depends on several
factors such as object sharing and ownership. As a
general guideline, value composition and equality are
typically employed when the parts are encapsulated
and not directly visible to the client, while reference
composition and equality are preferred for parts that
are shared and directly visible to the client. In the
Game class, both the board and two players are
exposed and visible to clients. Therefore, we opted
for reference composition and equality for most
methods. However, we found one method where
value composition works better.

Outcome makeMove(int x, int y) {
 var preModel = (_board.model..frame([(x, y)]), any);
 _board.placeStone(x, y, _currentPlayer);

 …
 assert(preModel == (_board.model, modelPlayers));
 return …;

}

@assertOnly
get modelPlayers => (_currentPlayer, /* opponent */);

The makeMove() method implements the logic for
the current player’s next move by placing a stone on
the specified place. It also updates the turn to the next
player if the move does not result in a gaming-ending
scenario, such as a winning move. Hence, it has the
potential to modify both the board and the players’
aspects of the game. However, since it might only
change a specific place of the board, it would be
advantageous to create a game model as a
composition of the board’s model, rather than the
board object itself, as demonstrated above.

In our examples, we considered only the state
changes of the receiver object. However, a method
can access other objects, including parameters.
Therefore, the state can be defined as a combination
of the receiver and operation-specific state,
representing a universe of objects accessible during

method execution. In other words, the state accessible
to a method includes not only the state of the receiver
object but also additional state components accessed
via parameters and global references. While the
receiver remains constant across all methods within a
class, other components may vary depending on the
specific method in question. A limitation of our
approach is that the programmer must specify this
state information for each method as part of the frame
axioms. It may be necessary to define multiple model
getters or abstraction functions, including those
tailored for various parts of the object.

Another caveat of our approach is that it allows
intermediate changes, as only the final state is
checked. While this has no impact in a sequential
environment, it may be significant in a concurrent
environment where intermediate changes can be
visible to the client.

6 RELATED WORK

Frame axioms are foundational elements in formal
specification languages, precisely specifying which
parts of a system's state are impacted by an operation
and which remain unaffected (Borgida et al., 1995).
In behavioral interface specification languages like
Larch (Guttag & Horning, 1993), JML (Leavens et al,
2005), and Spec# (Leino & Müller, 2007), frame
axioms define the interface contracts of software
components, including preconditions, postconditions,
class invariants, and frame properties. Special
constructs such as modifies and assignable clauses
specify which variables or fields may be modified by
methods, serving as frame axioms that specify the
parts of an object's state subject to change during
method execution (Chalin et al., 2005). Fields can
also be grouped for writing frame properties (Leino,
1998). However, research into runtime checking of
frame axioms is relatively uncommon, as these
properties are usually verified statically during
program analysis or verification (Marché et al.,
2004). Consequently, our work stands out by offering
a quick, straightforward, and practical solution to
ensure frame properties with executable assertions.

The use of abstract functions, pioneered by Hoare
in formal program verification (Hoare, 1972), appears
in behavioral interface specification languages such
as JML and Spec# in the form of model variables –
specification-only variables whose values are defined
and calculated in terms of concrete program variables
and states (Cheon et al., 2005). It was also suggested
to write executable assertions abstractly by mapping
a program state into an abstract assertion state or
model through the provision of an abstract function
(Cheon, 2022). This approach proves particularly
beneficial for writing design assertions – constraints

and decisions translated from design that must be held
regardless of concrete representation choices, such as
data structures. The resulting assertions become not
only more understandable but also more maintainable
and reusable (Cheon, 2022; Cheon, 2024). Our
approach aligns with this strategy and facilitates the
translation of frame axioms and properties into
executable assertions, in addition to pre and
postconditions. The use of assertion-only immutable
collection classes to create abstract models should
equally apply to our approach (Cheon, 2023).
Moreover, the utilization of abstract models in our
approach allows for formulating the notion of
observable side effects at different abstraction levels.

7 CONCLUSION

Our work has shown the potential of frame axioms
and properties as practical tools for programmers. By
employing abstract models and executable assertions,
we provided a systematic and effective coding style
and technique for asserting frame properties, along
with pre and postconditions, in software
development. This approach not only enhances the
readability, maintainability, and reusability of
assertion code but also enables the formulation of
observable side effects at different abstraction levels.
While research into the runtime checking of frame
axioms remains relatively uncommon, our work
stands out by offering a straightforward and practical
solution for ensuring frame properties through
executable assertions. Further exploration and
refinement of our approach, especially through
annotation-based automation, could pave the way for
more robust and reliable software development
practices.

REFERENCES

Borgida, A., Mylopoulos, J., & Reiter, R. (1995). On the

frame problem in procedure specifications. IEEE

Transactions on Software Engineering, 21(10), 785-

798.

Casalnuovo, C., Devanbu, P., Oliveira, A., Filkov, V., &

Ray, B. (2015). Assert use in GitHub projects.

IEEE/ACM 37th International Conference on Software

Engineering (ICSE), Florence, Italy, 755-766.

Chalin, P., Kiniry, J. R., Leavens, G. T., & Poll, E. (2006).

Beyond assertions: Advanced specification and

verification with JML and ESC/Java2. Formal Methods

for Components and Objects: 4th International

Symposium, FMCO 2005, Amsterdam, The

Netherlands, November 1-4, 2005, Revised Lectures 4

(pp. 342-363). Springer Berlin Heidelberg.

Cheon, Y. (2022). Design assertions: executable assertions

for design constraints. 14th International Symposium on

Software Engineering Processes and Applications

(SEPA), July 4-7, Malaga, Spain. Published as ICCSA

2022 Workshops, Lecture Notes in Computer Science,

13381, 617-631, Springer.

Cheon, Y. (2024). Constructive assertion with abstract

models. 12th International Conference on Model-Based

Software and Systems Engineering (MODELSWARD

2024), Rome, Italy, February 21-23 (pp. 211-218).

Cheon, Y., Leavens, G. T., Sitaraman, M., & Edwards, S.

(2005). Model variables: cleanly supporting abstraction

in design by contract. Software: Practice and

Experience, 35(6), 583-599, Wiley.

Cheon, Y., Lozano, R., & Prabhu, R. S. (2023). A library-

based approach for writing design assertions.

IEEE/ACIS 21st International Conference on Software

Engineering Research, Management, and Applications

(SERA), Orlando, FL, USA, 22-27.

Counsell, S., Hall, T., Shippey, T., Bowes, T., Tahir, A., &

MacDonell, S. (2017). Assert use and defectiveness in

industrial code. IEEE International Symposium on

Software Reliability Engineering Workshops

(ISSREW), Toulouse, France, 20-23.

Flutter. (2024). Flutter – Build for any screen. Flutter.dev.

https://flutter.dev/.

Guttag, J. V., & Horning, J. J. (1993). Larch: Languages

and Tools for Formal Specification. Springer.

Hoare, C. A. R. (1972). October. Proof of correctness of

data representations, Acta Informatica, 1(1), 271–281.

Kochhar, P.S. & Lo, D. (2017). Revisiting assert use in

GitHub projects. 21st International Conference on

Evaluation and Assessment in Software Engineering

(EASE), June, 298-307.

Leavens, G.T., Cheon, Y., Clifton, C., Ruby, C., & Cok, D.

(2005). How the design of JML accommodates both

runtime assertion checking and formal verification.

Science of Computer Programming, 55(1-3), 185-208.

Leino, K. R. M. (1998, October). Data groups: Specifying

the modification of extended state. 13th ACM SIGPLAN

conference on Object-oriented programming, systems,

languages, and applications (pp. 144-153).

Leino, K. R. M., & Müller, P. (2007). Using the Spec#

language, methodology, and tools to write bug-free

programs. LASER Summer School on Software

Engineering (pp. 91-139). Berlin, Heidelberg: Springer

Berlin Heidelberg.

Matuszek, D. (1976). The case for assert statement. ACM

SIGPLAN Notices, 36-37, August.

Marché, C., Paulin-Mohring, C., & Urbain, X. (2004). The

Krakatoa tool for certification of Java/JavaCard

programs annotated in JML. The Journal of Logic and

Algebraic Programming, 58(1-2), 89-106.

Rosenblum, D. S. (1995). A practical approach to

programming with assertions. IEEE Transactions on

Software Engineering, 21(1), 19-31, January.

Yu, Z., Bai, C., Seinturier, L., & Monperrus, M. (2019).

Characterizing the usage, evolution and impact of java

annotations in practice. IEEE Transactions on Software

Engineering, 47(5), 969-986.

