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Abstract—As scientific research grows increasingly collabora-
tive, data-driven, and computation-intensive, Research Comput-
ing Infrastructures (RCIs) have emerged as critical platforms
for enabling scientific collaboration across diverse disciplines.
These infrastructures offer advanced computational and stor-
age solutions essential for collaborative research, yet securing
shared access to such resources remains a significant challenge.
Consequently, there has been limited investigation into how
collaboration context is conceptualized and leveraged during
access provisioning, especially within RCIs. In this paper, we
investigate existing resource sharing practices within RClIs, re-
vealing key gaps in their ability to support secure authorization
within dynamic, project-driven collaborative workflows. Building
on these insights, we introduce a framework called CLEARS
(Collaboration-Aware Authorization for Resource Sharing) that
formally represents collaboration contexts and operationalizes
them to guide secure, context-aware, and dynamically evolving
resource sharing authorization throughout the collaboration
lifecycle. Through experiments, we demonstrate that CLEARS
delivers precise access enforcement under evolving collaborative
scenarios while maintaining minimal execution overhead.

I. INTRODUCTION

The multifaceted nature of the term ‘cyberinfrastructure’ is
better introduced by referring to the widely cited definition:

“Cyberinfrastructure consists of computing systems, data
storage systems, advanced instruments and data repositories,
visualization environments, and people, all linked together by
software and high-performance networks to improve produc-
tivity and enable breakthroughs not otherwise possible.” [1]

RClIs are critical cyberinfrastructures owned and man-
aged by research institutions, providing accelerated high-
performance computing resources and data storage solutions
to support a diverse scientific community [2]-[5]. Modern
science, ranging from training large language models to
genome sequencing, relies on massive datasets and complex
computation pipelines [6]-[9]. To meet these demands, RCIs
consolidate and centralize resources that were once siloed
across research groups, offering a cost-effective and unified
platform for scientific progress. As scientific research becomes
increasingly collaborative and interdisciplinary, RCIs play a
vital role in enabling secure sharing of computational and data
resources. This evolution has transformed RCIs into socio-
technical infrastructures that support scientific collaboration
across distributed research teams.

However, managing shared resources across multiple re-
search groups and navigating complex collaborative workflows

presents significant challenges. Resource sharing in such set-
tings must account for both the technical intricacies of the
infrastructure and the potential consequences if access around
shared resources is not securely regulated [10], [11]. Poorly
managed access can lead to serious consequences, including
confidentiality breaches and resource misuse, as exemplified
by the recent FHS data breach at Boston University [12].

However, effective access control is challenging due to
the need to balance security with the dynamic and flexible
nature of collaboration. Current practices often rely on frag-
mented, ad hoc resource sharing mechanisms that fail to reflect
the evolving structure of collaborations, leading to coarse-
grained and overprivileged access, and challenges in privilege
revocation [13]. Despite the highly collaborative nature of
these infrastructures, little is known about how collaboration
contexts are conceptualized and leveraged to guide access
decisions within RClIs.

Our research addresses this gap by investigating the follow-
ing research questions:

« RQ1: What are the existing challenges around access con-
trol and resource sharing practices within RCIs?

« RQ2: From an access control perspective, what unique
requirements must be addressed to support effective and
secure resource sharing in RCIs?

« RQ3: How can collaboration contexts be conceptualized,
designed, and utilized to enable secure and flexible resource
sharing authorization within RCIs?

To answer these questions, we perform a technical explo-
ration to identify key requirements to support collaboration-
aware resource sharing within RCIs. Drawing on these find-
ings, we introduce CLEARS, a framework that introduces
novel constructs such as the Collaboration Network, along
with the Privilege Expansion and Privilege Contraction al-
gorithms to allow user-centric flexibility in resource sharing.
Through experiments, we demonstrate that CLEARS effec-
tively captures the collaborative structure underlying resource
sharing and delivers precise access enforcement under evolv-
ing collaborative scenarios.

Thus, the main contributions of this paper are as follows:

« We investigate access control and resource sharing practices
within a real-world RCI (RQ1) to derive requirements
essential for secure and efficient resource sharing (RQ2)
in RCIs (§ III).



e« We propose CLEARS (§ IV), a systemic approach that
formalizes and manages collaborative contexts, enabling
efficient privilege management to support secure and flexible
resource sharing (RQ3).

« We implement a prototype of CLEARS, and evaluate its
behavior through scenario-based correctness analysis and
performance measurements in a simulated RCI environ-
ment (§ V).

The complete codebase, along with detailed guides for
reproducing the experimental environment and evaluation re-

sults, is available in our project’s GitHub repository [14].

II. BACKGROUND AND RELATED WORK

In this section, we explore the RCI foundational concepts
and recent advances in access control, underscoring the neces-
sity for specialized approaches to regulate scientific resource
sharing effectively.

Research Computing Infrastructure (RCI). At the core of
RCIs are sophisticated supercomputing clusters, comprising
thousands of high-performance CPU cores and hundreds of
GPU accelerators, which are organized into partitions, with
multiple partitions forming the cluster [3]-[5]. This massively
parallel processing power allows allows executing and scaling
computationally intensive tasks, such as complex simulations,
data analytics, and scientific modeling. Complementing the
HPC capabilities, RCIs also provide robust data storage solu-
tions for managing and sharing large research datasets, often in
terabytes. These include shared network file systems, project-
specific repositories, and archival storage. High-speed, high-
performance networks, typically powered by InfiniBand (IB),
ensure fast and reliable connectivity between facilities.

Acknowledging the vital role of RCIs in advancing scientific
innovation, recent efforts have significantly focused on enhanc-
ing the security posture of such environments [10]. Research
has increasingly focused on secure distributed sharing of
research data [15]-[17], infrastructure-level security [18]-[20],
and human-centered cybersecurity [13], with the overarching
goal of protecting scientific data, computation, collaboration
workflows, and the infrastructure itself.

Traditional Access Control and Beyond. Classic access
control models like Discretionary Access Control (DAC) [21],
Mandatory Access Control (MAC) [22], and Role-Based Ac-
cess Control (RBAC) [23] are widely used in large enterprise
applications where resources and access needs are relatively
static. However, these models face challenges in dynamic and
distributed environments typical of modern collaborative sys-
tems [24]. Despite their limitations, these models inspire the
development of paradigms, such as the Role-Based Delegation
Model [25], which allows entities in distributed environments
to delegate privileges based on rule-based policies, and the
Team-Based Access Control model [26], which introduced
“teams” to represent users in specific roles accessing shared
resources for tasks.

Similarly, the Collaborative Access Control (CollAC)
model [27] expands user-object relationships beyond owner-

ship to increase transparency in access decisions. Relationship-
based access control (ReBAC) model [28] considers inter-
personal relationships between resource owners and acces-
sors. To achieve more fine-grained control, Attribute Based
Access Control (ABAC) was introduced that evaluates user,
resource, and environmental attributes dynamically [29]. More
recently, Activity-Centric Access Control [30] was proposed,
which considers the relationship between activities in smart
collaborative systems for access mediation. In summary, while
traditional and recently-introduced paradigms offer a solid
foundation, they are mainly geared towards enterprise applica-
tions and other collaborative contexts. There is limited research
addressing the complex nature of scientific collaborations and
resource sharing in RCIs. While these existing models can
be adapted to RCI settings, we believe that explicitly concep-
tualizing collaboration contexts and leveraging them to guide
secure, flexible resource sharing is essential for addressing the
unique demands of scientific collaborations (§ IV-E).

III. REQUIREMENT ELICITATION

In this section, we outline our approach to investigate the
existing access control practices and elicit requirements to
support secure and efficient resource sharing within RCIs.

A. System Exploration

An in-depth system-level exploration of an RCI was con-
ducted to gain a clear understanding of its architectural compo-
nents, user and resource management processes, and existing
access control mechanisms. We proceeded as follows:

(1) Selection of the RCI Environment: We chose a
representative RCI [4] that we had access to, allowing for
direct hands-on system navigation. This RCI included two
clusters containing thousands of computing nodes, hundreds
of GPUs, and petabyte-scale storage, supporting nearly 1,000
active users, reflecting the typical scale of real-life RCIs. !

(2) System Navigation: We utilized non-administrative user
accounts to reproduce tasks that users typically perform for
collaborative resource sharing. This included creating files
and directories, observing and updating default privileges,
submitting jobs while modifying various parameters to assess
control levels, and interacting with the admins to set up shared
access to project resources. This informed our understanding
of the collaborative resource sharing use cases (§ III-B).

(3) Exploration of Users and Resources: Through hands-
on system navigation, we explored existing user and group
management practices, along with the available resources,
thereby identifying groups, directory structures, ownerships,
configurations, and default permissions.

(4) Investigation of Access Control Methods: We investi-
gated existing access control mechanisms supported within the
constraints of non-administrative privileges, including DAC
mechanisms to restrict access to files and directories [21],
and identified administrative privileges necessary for advanced

!To ensure that our observations extend beyond a single platform, we further
validated our findings by analyzing publicly available user documentation
from other RCIs [2], [3], [5], [31], [32]



configurations such as job scheduling, group management, and
project-wide privilege updates.

Observations. Our exploration revealed insights into the ex-
isting landscape of user, resource, and privilege management
within RCIs, aligning with findings from a recent multi-
stakeholder qualitative study on scientific collaboration and
privilege management [13].

Users can belong to multiple groups, such as faculty
groups, for users collaborating under the same faculty, and
project groups for extended cross-faculty collaborations. RCI
resources can broadly be classified into two categories: com-
puting partitions and data directories. Partitions could be
categorized based on job priorities, as some of them are
uniformly prioritized across all users (public partitions), while
others are prioritized for some user or group of users (private
partitions). Resource allocation and access for these resources
are typically managed by job schedulers, such as Slurm [33], in
conjunction with systems like Pluggable Authentication Mod-
ule (PAM) [34]. Data directories can be categorized based on
their purpose, ownership, and shareability. For instance, they
can range from shareable temporary storage (scratch space) to
non-shareable long-term repositories (home directories), and
customized project-specific storage accessible by a group of
users, (data directories), managed by file management such as
POSIX permissions [21].

From an access control perspective, resource sharing, as
a whole, is managed through a combination of user and
group-level permissions. Projects typically use group-level
permissions for data sharing, with all collaborators granted
uniform access, while further user-to-user sharing relies on
basic DAC mechanisms where the resource owner decides
access. Access to computing resources is controlled by the
job scheduler, which enforces permissions based on configu-
ration specifications like Slurm’s settings for AllowGroups,
AllowAccounts, and AllowQos for each computational par-
tition. However, these can only be updated by administrators.

B. An Illustrative Collaboration Workflow

With an overall understanding of the RCI environment,
we now present an illustrative scenario to demonstrate the
practical application of our exploration.

As shown in Figure 1, the workflow involves four re-
searchers: Alex(A), Bailey(B), Cathy(C), and Drew(D)
collaborating within the timeline of a project Pry.

Alex, a theoretical biologist, realizing that the project Pry
requires extensive computational tasks, such as data analy-
sis and simulations, collaborates with two other researchers:
Bailey for computational simulations, and Cathy, for ana-
lyzing simulation results. Together, they use shared resources
within an RCL. Erin(E), an RCI administrator, assists them
with privilege management.

Within RCI, each user owns specific objects such as files,
directories, computational partitions, etc. We denote such an
object as of*™ (i € N). For example, objects owned by
Alex(A) are denoted as {0, 05, 0%, ...}. We also assume that
by default only Alex has access to these objects, and only he
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Fig. 1: An Illustrative Resource Sharing Scenario within
Project Pry Involving Different Users and Resources.

can further share this access with others. Here, share means
providing access to the objects for performing valid operations
(such as read, write, submit jobs, etc.).

The following are the activities throughout the collaborative
workflow within the timeline of Pry:

(1) As Pr; starts, all collaborators engaged in the project
require access to specific common files and datasets currently
owned by Alex. Therefore, Erin creates a group named grp;
and adds Alex, Bailey, and Cathy. Alex shares required
files and directories, abstracted as {07, 05, 04}, with all other
collaborators using the group-level permissions.

(2) Bailey begins working on project Prq, requiring access
to the private computational partition, {0} } owned by Alex.
As such an operation requires updating the scheduler config-
uration, Alex requests Erin to provide access to Bailey.

(3) Subsequently, C'athy requires access to the simulation
results produced by Bailey, abstracted as {o%}, to conduct
analysis. As Alex does not need access to {0%}, Bailey se-
lectively shares {of} with C'athy using user-level permissions.

(4) Alex decides to expand the collaboration by inviting
a new researcher, Drew(D), to join project Pry. Drew is
an existing collaborator of Alex from another project Prs.
Erin adds Drew to the project group grp;. Since Drew is
a temporary collaborator on Prj, he does not need access to
all the shared resources {o0%,0%,0%}. However, as Drew is
added to grpi, he automatically gains access to all resources
through group-level permissions.

(5) Subsequently, Drew also starts helping Bailey and
Cathy on simulation and analysis and requires access to
relevant resources — the private partition {04 } and simulation
results {of}; Alex shares {04} with Drew with the help
of Erin, Bailey shares {of} with Drew using user-level
permissions.

(6) Drew leaves project Pry, thereby no longer needing
access to the shared resources. Drew is removed from grpi,



which revokes his access to resources shared through group-
level permissions.

(7) However, resources {o%,0%} were not shared using
group-level permissions. Therefore, Alex (with the help of
Erin) and Bailey must manually revoke Drew’s access, one
by one. They also need to consider whether Drew still requires
access to Alex’s resources, as he continues to collaborate with
Alex on Pro.

(8) As Pry concludes, access to all shared resources must
be revoked. However, the default access privileges obtained
through ownership must be retained. Erin removes them from
grp1, revoking all group-level privileges. However, the user-
level privileges still need to be manually revoked.

Overall, this scenario reveals two fundamental limitations
of current practices. First, group memberships and user-level
permissions are managed in isolation, with no unified view
that ties them together under a project-specific scope, i.e.,
collaboration context. Second, there is no explicit construct
to represent and maintain the evolving collaboration structure
over the project’s lifetime.

C. Requirements for Collaboration-Aware Resource Sharing

From our system exploration and illustrative workflow anal-
ysis (§ III-A), we elicit the following requirements for enabling
secure, efficient, and collaboration-aware resource sharing in
RCIs. These requirements reflect the importance of explicitly
representing and managing collaboration contexts throughout
the lifecycle of a project.

(R;1) Selective Privilege Sharing: Users should have the flex-
ibility to selectively determine the extent of access privileges
they wish to share, both concerning resources (how much to
share) and users (whom to share with). For example, instead
of uniformly sharing all resources with Drew, Alex should
have the option to selectively designate a subset {04} from
{0}, 05,04}, for sharing with Drew, while still maintaining
the sharing of the entire set of resources {o%,0%,03} with
Bailey and Cathy.

(R3) Selective Revocation of Shared Privileges: Users
should also have the ability to retract previously shared priv-
ileges at any time, including the extent of resources shared
and/or the involved users. This action should not affect the
privileges shared with other collaborators, and should also
dynamically adjust such privileges when needed. For example,
if Alex chooses to revoke Drew’s access to {o%}, which is
also shared with Bailey and Cathy, he must ensure that only
Drew loses access while the rest retain it.

(R3) Project-specific Sharing and Revocation: All shared
privileges should be managed within the context of specific
projects, ensuring that resource sharing and revocation are tied
to a particular collaborative context. This approach maintains
clarity and independence between the same collaborations
under different projects. For instance, if Drew leaves project
Pry but continues collaborating with Alex on Prs, Drew
should no longer have access to resources associated with Pry.
Similarly, revocations within Pr; should not affect privileges
shared within Prs.
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Fig. 2: Components of the CLEARS Framework.

(R4) Automatic Revocation of Shared Privileges: Upon a
user’s departure from a project, all shared resources with that
user should be automatically revoked as manual revocation is
both error-prone and lacks scalability. For instance, following
Drew’s exit from Pry, Alex, Bailey, or Cathy should no
longer have the privileges to share resources with Drew within
the context of Pr;. Additionally, once the project ends all
privileges should be automatically revoked.

(R5) A Uniform Interface for Resource Sharing: A unified
interface should streamline privilege management across var-
ious types of resources, by offering a consistent method for
assigning and revoking access. This approach is essential not
only to reduce administrative burden but also to provide users
with a consistent experience.

These requirements are grounded in a set of critical guid-
ing principles that emphasize the importance of formulating
collaboration context in RCIs. For instance, requirements
(R1), (R2), and (R4) collectively reflect the principle of
least privilege [35], enabling precise control over resource
sharing and timely revocation of access. Requirement (Rg3)
enforces the management of privileges within explicit project
contexts, ensuring clear association between collaborative rela-
tionships and granted privileges, promoting context-aware re-
source sharing. Finally, requirement (R5) underscores the need
for uniform privilege management across diverse resources,
improving both usability and auditability.

IV. COLLABORATION-AWARE RESOURCE SHARING

In this section, we propose and formalize the core constructs
for representing collaboration context, through the CLEARS
framework for enabling secure, collaboration-aware resource
sharing within RCIs.

A. Projects, Collaborations, and Privileges

As illustrated in Figure 2, CLEARS is based on the follow-
ing fundamental entities: Users (U), Objects (O), Privileges
(P), Projects (Pr), and Collaborations (C).

Users in this framework refer to any non-administrative
entity interacting with the system, that require access to
protected resources. Objects represent an abstraction of the
underlying protected resources. For resource sharing, objects



can either be shareable (e.g., a computational partition) or
non-shareable (e.g., home directories). Privileges represent
an approval to execute specific operations (e.g., read, write,
execute) on the objects within the system. Each privilege, thus,
can be represented as a pair (operation, object). Traditionally
operations mean the access mode that can be exercised on
the objects. For instance, (submit_jobs, cpu_partition;)
indicates the privilege to perform the operation submit_jobs
to the object named cpu_partition,.

Projects are conceptualized as organized efforts involving
a set of users represented by a dynamic timeline with specific
start and end points. Within a project, Collaborations are the
flexible grouping of the involved users, forming a foundation
for resource sharing. The framework allows collaborations
to be formed only within the contextual scope of a project,
ensuring users are never grouped without a context. It supports
collaborations through various combinations of users, with two
key bounds: the lower bound is a collaboration involving two
users, referred to as user-to-user (U2U) collaboration, and
the upper bound is a collaboration involving all users within
the project, termed as N-collaboration. Self-collaboration, i.e.,
users forming collaborations with themselves is deliberately
prevented, as it offers no practical benefit as resources can
be accessed through direct ownership (§ IV-C). This flexible
definition of collaboration allows users within the same project
to belong to multiple collaborations, rather than being limited
to a single, all-encompassing per-project or per-faculty group,
as currently practiced (§ III-A).

Shared privileges representing user-to-user resource sharing
are also contextualized within the scope of a project. The
framework assigns shared privileges to collaborations rather
than directly to individual users. This approach allows all
users grouped within a collaboration to obtain the assigned
privileges, effectively broadening the context from an indi-
vidual user level to a collaboration level. Simultaneously, by
contextually bounding the privileges within a project, the scope
of each shared privilege is defined. This enhances auditability
and provides a clearer foundation for making access decisions.
In this way, all other foundational entities (U, C, and P) are
contextualized within projects (Pr).

Definition 1. The foundational elements of CLEARS are
defined as follows:

o U ={ui,ug,....,un}, a set of all users in the system;

e O ={01,09,...,0;m}, a set of all objects in the system;

e OP = {op1,0p2,...,0p;}, a set of operations allowed in

the system;

P = {(opi,05) | op; € OP and oj € O}, a set of privileges

to perform any valid operation on an object in the system;

C ={U; | Uy C U2 < |Ug| < |U|}, a set of all

permissible collaborations in the system. Each collaboration

(ck, € C) is a subset of U containing 2 or more users in U;

and,

o Pr={(pr;,U;,C;, AP;) | i € N}, a set of all projects in
the system, where each project is defined by a four-element
tuple:

{Alex, Bailey,

{Bailey,
Cathy,Drew)

Fig. 3: A sample Collaboration Network (CN) depicting all
possible combinations for users Alex, Bailey, Cathy, and Drew,
all connected through a Collaboration Hierarchy (C'H).

— pry, where © € N, a unique identifier for each project,

U, CU, |U;| > 2, a set of users involved in project pr;,
Ci ={U; | U; € Ui,2 < |Uj] < |Uil}, a set of
collaborations under a project pr;,

AP; = {(cij,pr) | ] € N,¢;j € C; and py, € P}, a set of
assigned privileges shared within project pr;

Expanding upon Definition 1, we introduce two additional
concepts: Collaboration Hierarchy (C'H) and Collaboration
Network (CN) to support administrators in effectively man-
aging shared privileges within collaborations.

CH serves as a means to depict the interconnected re-
lationships among collaborations. Since collaboration rep-
resents a set of users, C'H utilizes the containment re-
lationship (2) based on the participating users to relate
two collaborations. For instance, if we have a collabo-
ration {Alex, Bailey, Cathy}, it inherently contains three
other collaborations: {Alex, Bailey}, { Bailey, Cathy}, and
{Alex,Cathy}. Given that all users involved in these latter
collaborations are also part of {Alex, Bailey, Cathy}, the
privileges associated with {Alex, Bailey, Cathy} naturally
extend to the smaller collaborations.

It is important to note that C'H is distinct from constructs
such as Role Hierarchy in RBAC [23] or the lattice structure in
MAC [22]. Unlike these models, which encode organizational
semantics of authority and responsibility, C'H is based solely
on a simple containment relationship between user sets.

Following the idea of collaboration hierarchies, for each
project, a directed acyclic graph can be constructed by con-
sidering all possible collaborations connected through the
CH relation. In Figure 3, we illustrate one such graph
with four users Alex, Bailey, Cathy, and Drew. The di-
rected edges signify the containment relationship between
two collaborations, as defined by CH. For example, the di-
rected edges from { Alex, Bailey, Cathy} to { Alex, Bailey},
{Bailey, Cathy}, and {Alex, Cathy} represent that the for-
mer contains the latter collaborations and therefore there is
a natural flow of privileges from {Alex, Bailey, Cathy} to
the rest through privilege inheritance. We name such graphs
a per-project Collaboration Network (C'N). This hierarchical
structure allows for a complete representation of collaboration
dynamics within the project.

Definition 2. Collaboration Contexts. The relevant collabo-



ration contexts are defined as follows:

o CH = {(ci,¢j) | ciyej € Coei 2 ¢}, a partial order
on C' called the Collaboration Hierarchy based on the
containment relationship,

¢« CN={(V,E)|V CCand E C CH}, a set of directed
acyclic graphs, known as Collaboration Networks (CNs),
where each node is a collaboration, and each edge is an
element of the Collaboration Hierarchy,

e pcn @ Pr — CN, a function mapping each Project pr; to a
Collaboration Network cn;, ie., pcn(pr;) = cn;, where,

cn; = {C“ Ez}:
E; ={(¢cz,¢y) | €,y € Ci, (caycy) € CH}

From the perspective of shared privilege management, such
per-project networks aided with assigned privileges (AFP;)
provide a complete snapshot of all shared privileges within
the context of a project. For instance, referring back to the
example in Figure 1, consider when Alex shares resources
{0}, 05,04} with Bailey and Cathy while sharing resources
{04} with Bailey alone. Assigning privileges to access
{o?, 05,04} at the collaboration { Alex, Bailey, Cathy}, and
{04} at {Alex, Bailey} can accurately represent the shared
privileges and effectively grant Bailey and Cathy to access
{0}, ob, 04 }, while selectively allowing Bailey to access {04}
restricting C'athy’s access. This way, the shared privileges
within a project can be distributed across multiple collab-
orations instead of being exclusively shared within the N-
collaboration context, as currently practiced.

B. CLEARS Functions

CLEARS is designed to help administrators efficiently
manage shared privileges in collaborative projects, while also
supporting resource owners in selectively sharing and revoking
privileges. It provides both administrators and users with
functions tailored to their respective needs.

Based on this understanding, the supported functions are
categorized into two intuitive groups: admin-only and owner-
centric functions. Admin-only functions require elevated priv-
ileges and are only executed by admins. In contrast, owner-
centric actions directly modify privileges and, therefore, re-
quire further authorization.

‘Admin-only’ functions. Here, we discuss the administra-
tive functions supported by CLEARS: (1) create_project:
Creating a new project initializes an empty collaboration
network associated with the project; (2) end_project: Termi-
nating an existing project, removes all relevant user-project
associations and the associated network and all shared priv-
ileges; (3) add_collaborator: This function associates users
with an existing project, updating the project definition; (4)
remove_collaborator: Users can also be removed from a
project, which involves updating the project definition. This
action also revokes any privileges, leading to a dynamic
shrinkage in the collaboration network, as all collaborations
involving the removed collaborator are eliminated.

For employing these functions, CLEARS requires only ele-
vated privileges, leaving all authorization decisions to adminis-

trators. They may, for example, pre-authorize users to manage
projects or collaborators, or restrict ownership and resource
creation. Importantly, CLEARS itself remains agnostic to such
administrative policies.

‘Owner-centric’ functions. As outlined in § III-C, a key
objective of CLEARS is to support resource owners to se-
lectively determine the scope of access privileges they intend
to share, both in terms of resources (how much to share) and
users (whom to share with). Equally important is the ability to
retract previously shared privileges. Therefore, the following
are the two owner-centric actions supported, in addition to
traditional actions such as create and delete resources: (1)
share_privilege: Resource owners can share privileges to
access certain resources with others by meeting certain precon-
ditions defined in can_share (§ IV-C); (2) unshare_privilege:
Resource owners can revoke previously shared privileges with
others. These actions might trigger privilege expansion and
contraction, respectively, further discussed in § IV-D.

C. Authorization of Resource Sharing

It is crucial to recognize that executing the owner-centric
functions (§ IV-B) directly alter the assigned privileges within
project collaborations, dynamically influencing what objects
a user can access. Therefore, imposing restrictions on these
actions becomes imperative. By enforcing preconditions for
each sharing and unsharing action, concerning both resources
(which objects are involved) and users (who are the partic-
ipants), CLEARS ensures that such actions do not result in
unauthorized access.

Accordingly, CLEARS imposes constraints on these actions
based on the association between the user performing the
action, the involved objects, and the recipients of the shared
privileges. For instance, the following constraints are enforced
for sharing privileges: (1) Regarding the resources involved,
the pre-condition is that the user wanting to share this resource
must be the resource owner. This ownership constraint pre-
vents unauthorized sharing of privileges acquired from other
users (i.e., multi-step sharing), thereby mitigating the risk of
resource misuse across multiple project contexts and ensuring
better accountability of shared privileges; (2) Concerning the
recipients of the shared privileges, users are authorized to share
resources only with collaborators within a project. Any attempt
to share resources with non-collaborators is restricted.

Before formally defining the constraints above, we augment
the framework with the newly addressed concept of ownership.

Definition 3. Ownership. Ownership is supported as follows:

e owner : O — U, a function mapping each object (or
Resource) to a single user, i.e., owner(o;) = u;

Definition 4. Constraints in Sharing. The following relation
authorizes the action share_privilege for user-to-user resource
sharing, capturing the above-mentioned constraints:

e A user w; can share the privilege p, = (op,or) that
authorizes access to the object oy, to another user uj, if
(u;, pi, u;) € can_share, where,



owner(oy) = u;, and
Fprepr Ui, w; € Uy, and {u;,u;} € Cp,

The notation (u;, pk, u;) € can_share signifies that user w;
can perform share_privilege py, associated with the object oy,
with another user u;, if (1) u; is the owner of the concerned
object o, and (2) there exists at least one project pr,,, of
which both u; and u; are part of, and the collaboration
between these two designated as {u;, u;} is related with pr,,.
The same constraints hold for unshare_privilege as well.

D. Dynamic Management of Privileges

As discussed in § IV-A, since every collaboration is con-
tained within its parent collaborations, it can naturally inherit
shared privileges from the parent collaborations. Therefore,
an effective approach to managing shared privileges is to
allocate privileges shared with more users closer to the N-
collaboration, while reserving more specialized access priv-
ileges for U2U nodes. This allows each shared privilege to
be assigned to a single context while meeting the sharing
requirements. For example, in Figure 1, when Alez initially
shares {04} with Bailey and later extends it to Drew, dupli-
cating {0} } within both {Alex, Bailey} and {Alex, Drew}
is unnecessary. Instead, we can consolidate this common
privilege at a broader collaboration, {Alex, Bailey, Drew}.
This eliminates the need to maintain identical privileges across
multiple collaborations.

This requires the C'N to dynamically capture each modifica-
tion of privilege assignment resulting from the share_privilege
and unshare_privilege actions. Moreover, as the network grows
(or shrinks) with the addition (or removal) of collaborators,
privileges must be dynamically redistributed to ensure that
assigned privileges accurately reflect the actions taken so far.
This is facilitated by two phenomena: Privilege Expansion and
Privilege Contraction.

Privilege Expansion. It occurs when the scope of a privilege
is expanded to encompass a broader collaboration context in
the C'N, involving more users, closer to the N-collaboration.
This becomes evident when a privilege is shared within a new
collaboration, whereas it was already shared within an existing
collaboration. The expanded collaboration now includes both
the existing collaborators and the new collaborators with
whom the privilege was shared. This serves two primary
purposes: (1) to prevent duplication of the same privilege
across multiple collaborations within the same network, and
(2) to ensure that the privilege always resides in the broadest
context possible including those who are authorized to have
access, maximizing its accessibility within the network.

Mathematically, if a privilege p; is shared within a new
collaboration context c; within the project pry,, the elevated
context ¢’ can be obtained as follows:

if Eck NS Cm, (Ck,pi) c AP,
cj, otherwise, given c¢; € Cy,

c; Ucg
c/: J ’

Therefore, the privilege p; will be assigned to the expanded
collaboration ¢’ and removed from the past collaboration cg,

Privilege Expansion

Alex shares {0§ }

¢ Privilege Contraction
with Drew

(Alex, Bailey, Alex unshares {0‘; }
Cathy, Drew}

with Drew
S

{Alex, Bailey,
Cathy, Drew}

{Alex, Bailey,
Cathy}

A
{of,09,03
{Alex, Bailey,
Cathy}

Fig. 4: Dynamic Management of Privileges within a CN
through Privilege Expansion and Privilege Contraction.

if it exists within pr,,. For instance, referring to Figure 4,
if Alex wanted to share only {0{} with Drew, initially
shared with both Bailey and Cathy within the collaboration
{Alex, Bailey, Cathy}, through privilege expansion, scope
of {04} is expanded to the N-collaboration, denoted as,
{Alex, Bailey, Cathy, Drew}.

Privilege Contraction. It occurs when the scope of a privilege
is moved from a broader collaboration context to a more
specialized context, closer to the U2U collaboration level. This
happens when a shared privilege is partially revoked from
a collaboration within a project, while still retaining it with
some users in that collaboration. The contracted collaboration
now comprises only the remaining collaborators who still need
the privilege, along with the owner. This serves two primary
purposes: (1) to ensure that users from whom the privilege
has been revoked no longer possess it, and (2) to maintain the
sharing status with other collaborators who still have access
to that privilege.

Mathematically, if a privilege p; = (op, 0;) is to be revoked
from a collaboration context c¢; within the project pr,, the
contracted context ¢’ can be obtained as follows:

(ck — ¢j) U owner(o;),
d = if 3., : ek € Oy, (ckyDi) € APy, ek # ¢
¢, ifcp=c¢

Therefore, if the privilege p; needs to be revoked from
a collaboration c;, and there exists another collaboration cy,
within pr,,, where p; is already shared, the privilege will
be removed from c; and assigned to the contracted context
c. This ¢’ is formed by taking a set difference of c; and
¢; and explicitly including the owner(o;), as the owner is a
member of both ¢; and ¢, collaborations. Consequently, if ¢y
is the same as c;, the privilege p; is simply removed since the
contracted context is empty (represented by ¢).

For instance, consider the scenario (Figure 4) where Alex
decides to unshare {04} from {Alex, Drew} to selectively
revoke Drew’s access. Since {04} is currently shared within
the N-collaboration, in this case, {og‘} moves from the N-
collaboration to the collaboration { Alex, Bailey, Cathy}, as
Bailey and Cathy still retain access to {04}, but Drew no
longer has access to it. This ensures that the sharing status
with other collaborators, if any, remains unchanged while
preventing Drew from retaining access to the privilege.



E. Integration with Existing Models

It is important to note that, the core contribution of CLEARS
lies in formulating the notion of collaboration context, which
can be consumed by existing access control models (§ II) to
make more precise and context-aware authorization decisions.

For instance, CLEARS can complement traditional ACL-
based DAC mechanisms by representing each collaboration
context as a system group (or ACL principal). In this setup,
privilege expansion and contraction are realized through corre-
sponding group membership and ACL updates. By integrating
CLEARS’s constructs into this process, privileges can be
managed with greater precision and contextual awareness
(§ II-C). This integration is further illustrated in our proto-
type implementation [14]. Similarly, CLEARS can potentially
extend RBAC by enabling collaboration-scoped roles, that are
instantiated and bounded to a specific collaborative context.
This approach ties role assignments and their permissions
directly to the dynamic nature and structure of an active
collaboration context, avoiding global, coarse-grained roles
and promoting least-privilege enforcement at the project level.
Moreover, the lifecycle events emitted by privilege expan-
sions and contractions can further support Administrative
RBAC [36], governing the assignment and revocation of role
memberships as collaboration structures evolve, reducing the
risk of lingering privileges when a collaboration or a project
ends. In addition, CLEARS can be utilized to lay out and
enforce context-related constraints within RBAC settings.

While this work introduces and formalizes the core con-
structs of CLEARS, exploring its systematic integration with
established access control frameworks remains a promising
direction for future research (§ VI).

V. EVALUATION

In this section, we evaluate CLEARS against the following
two key questions:
(Correctness) How effectively does CLEARS’s collaboration-
context representation support correct access decisions in
dynamic resource sharing scenarios?
(Performance) How much execution overhead CLEARS incurs
when handling resource sharing under realistic workload?

A. Correctness Evaluation

To evaluate the correctness of CLEARS, we conduct a
scenario-based small-scale case study that simulates a realistic
resource-sharing scenario, allowing us to analyze access de-
cisions under dynamic privilege assignments and revocations
throughout the project lifecycle.

Case Study Design. The scenario is an extended version of
the one introduced in § III-C. It involves six users (Alex,
Alice, Bob, Connor, Drew, and Dave) participating in two
overlapping research projects: ProjectX (involving Alice, Bob,
Connor, and Dave) and ProjectY (involving Alex, Alice,
Bob, and Drew). Each user has a personal directory in
/scratch/, while Alice, Alex, and Bob also own directories
in /data/. Additionally, Alice owns a private partition named
alice_partitionl, resulting in a total of ten resources.

No. of ‘Permit’ Decisions (out of 60 requests)

G U R CLEARS  GT

t=0 10 10 10 10 10
t=1 15(+5) v ],5(+5>‘/ ],5(_5)'/ ]5(+5>‘/ 15(+5)
t=2 184a) 17427 17157 17157 1749
t=3 213" 1949 1949 190427 1919
t=4 24457 20417 204117 20041)Y  20(41)
t=5 275" 21417 gy 27 2y
t=6  25_9)" 192" 192" 195" 19_q
t=7 223" 19_q)f 172" 17_5Y  17(_g
t=8 19_g" 18T 16(_1)" 16(_Y  16(_1
t=9 18(,”-:-# 18(70)';.# 16(70)';.# 1/1(72)‘/# 14(72)
t=10 10_g) " 153 ™ 16(_oy" 10(_4)"" 10(_4)

t = 0: ProjectX, ProjectY start, and Users are added to projects

: Alice shares /scratch/alice with ALL in both projects

: Alice shares /data/alice with Bob, Connor in ProjectX

: Dave shares /scratch/dave with Alice, Connor in ProjectX
: Alice shares alice_partitionl with Alex in ProjectY

: Bob shares /data/bob with only Alex in ProjectY

: Alice unshares /scratch/alice with ALL in ProjectX

t = 7: Alice unshares /scratch/alice with Alex, Drew in ProjectY
: Alice unshares alice_partitionl with Alex in ProjectY

: Dave leaves ProjectX

t = 10: ProjectX and ProjectY end and Users are removed

¥ Matches with the ground truths at each consequent step (green).
¥ Mismatches with the ground truths at each consequent step (red).
# Manual revocation of privileges is not assumed.

TABLE I: Correctness Comparison based on the number of
‘Permit’ decisions across scenario timestamps.

Throughout the scenario, we simulate different project
events such as resource sharing and revocation, collaborators
joining and leaving the project, and project completion, over
11 timestamps as illustrated in Table I. At each timestamp,
six users make access requests to all ten resources, yielding
60 total access requests.

Understanding Existing Approaches in RCI. During our
exploration (§ III-A), we observed hybrid DAC mechanisms
involving a combination of user and group-level permissions.
Privileges for project-specific resources are managed uni-
formly at the group level, while in others, resource owners
grant access on an as-needed basis to individual users without
any direct association with a project. These approaches are
managed in isolation, with no representation of collaboration
contexts.

To understand the role of collaboration context in resource
sharing, we explore three observed practices in RCIs, none of
which explicitly represent collaboration context. They differ
primarily in how privileges are assigned by resource own-
ers—whether at the group level, user level, or role level.

o Group-only (G): All shared privileges are assigned at the
project group level with no additional support for user-to-
user resource sharing [37].

o User-centric (U): This is a hybrid approach where only the
privileges that need to be shared with all collaborators are
assigned at the group level. All other privileges are shared
directly on the user-to-user level [38].

« Role-based (R): A role-based discretionary approach [39]



where each object is associated with an owner role and
one or more access roles. Users assigned to the owner
role can grant or revoke access for others by managing
their membership in access roles, controlling access to the
corresponding object.

Comparative Analysis and Insights. As shown in Table I,
the correctness of each approach is measured by counting the
number of ‘permit’ decisions out of 60 possible access requests
at each timestamp. The subscripted numbers indicate changes
in permits compared to the previous step, illustrating the effect
of each event/action on access decisions.

The number of ‘permit’ decisions serves as an abstract
yet effective metric for measuring the correctness of the
approaches by capturing the deviation from the theoretical
ground truth in making access decisions. A positive or negative
deviation means the model is too permissive or too restrictive,
respectively, with an exact match being ideal. The ground truth
for each timestamp is derived by accounting for the intended
access privileges throughout the project’s lifecycle.

Initially, at timestamp ¢ = 0, only the owners have access
to their resources, resulting in 10 permit decisions (one per
resource). As the project advances, these initial privileges are
modified based on specific sharing and un-sharing actions.
This process continues dynamically until the project’s comple-
tion, at which point all shared privileges are revoked, ensuring
that only the original 10 privileges remain at timestamp ¢ = 10.
Table I indicates the correct access decisions (v') matching the
ground truth, and any unmatched decisions (7). As observed,
the access decisions evaluated by CLEARS match exactly
with the ground truth, supporting its correctness. Upon further
analysis, we observe the following:

The Group-only approach (G) configures privileges in a
manner that is either too permissive or too restrictive, resulting
in unintended ‘permit’ or ‘deny’ decisions. For instance, at
t = 2, G assigns the shared privilege directly to the ProjectX
group, thereby granting Dave excessive access as the privilege
cannot be selectively assigned only to Bob and Connor.
Similarly, at £ = 7, access is revoked for all involved, including
Bob, which was not intended.

CLEARS addresses this by representing all possible collab-
oration contexts within a project-specific C IV, enabling more
flexible and selective sharing and revocation of privileges.

The User-centric approach (U), while effective in flexible
resource sharing by allowing a user-to-user approach, fails
to maintain project or collaboration context. This leads to
difficulties in revoking access (t = 7; 8).

CLEARS addresses this by associating each privilege
with a unique project-collaboration context within a per-
project C'N, improving visibility and management.

The Role-based approach (R), while solving the issue of
flexible and selective revocation, the lack of context-awareness
makes it difficult to support the automatic revocation of shared
privileges. For example, at ¢ = 9, when Dave leaves the
project, it is essential to ensure that all privileges shared with
Dave are revoked and that any privileges Dave shared with
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TABLE II: Requirement-level Comparison (§ III-C) based on
findings from the scenario-based case study.

others are also revoked. However, in the current setup, such
revocations must be performed manually, which can result in
unretracted privileges.

CLEARS supports automated privilege revocation by re-
moving the contexts involving the removed collaborator from
the C'N, ensuring that no shared privileges remain unrevoked
after such events.

We summarize the outcome of this comparative analysis
in Table II, depicting the level of support each approach
provides across critical access control requirements identified
in § III-C. Each requirement is marked as fully (@), partially
(©), or not (O) supported based on the model’s behavior
observed in the case study. As illustrated, CLEARS is the
only model that fully supports all key requirements, including
selective, project-specific privilege sharing and revocation, and
automatic revocation upon departure or project completion.

B. Performance Evaluation

While the correctness analysis highlights the benefits of
embedding privileges in a collaboration context, it is also
important to assess the overhead of maintaining and updating
this context under realistic workloads. To this end, we conduct
a detailed experimental evaluation focused on measuring the
execution latency during share and unshare operations in dy-
namic collaboration settings. For this evaluation, we developed
a command-line interface (CLI) tool, clears. Implementa-
tion details can be found in our code repository [14].

Evaluation Procedure. To evaluate the execution latency
overhead introduced by CLEARS, we simulate a dynamic
project environment with a randomized workload that evolves
over 100 discrete timestamps. The project begins with 20 col-
laborators and gradually scales up to a maximum of 100 users
with 100 resources. At each timestamp, a randomized set of
operations is performed to emulate realistic project dynamics.
These operations include user additions and removals, as well
as privilege share and unshare actions.

For example, at any given timestamp, a subset of users
can initiate share (or unshare) operations, with recipients
randomly selected to reflect varying scopes of collaboration,
ranging from a single individual to all active collaborators.
This randomized selection models diverse real-world sharing
patterns as outlined in Table II. By incorporating such vari-



Metric Action R1 R2 R3 R4 RS R6 R7 R8 R9 R10 Mean
Minimum Latency  Share 197 191 190 174 185 181 137 174 49 178 166
Unshare 150 149 157 139 143 144 372 142 50 142 159
Maximum Latency  Share 1157 977 738 997 802 274 678 532 346 610 711
Unshare 949 1265 723 934 630 835 542 467 522 1055 792
Mean Latency Share 343 362 345 402 312 322 306 300 312 304 331
Unshare 332 343 324 332 281 287 272 268 285 270 299

TABLE III: Execution Latency of CLEARS for Each Share and Unshare Operation under a Randomized Workload in a Project
with up to 100 Users, and 100 Resources Measured Across 10 Experimental Runs (in milliseconds).

ability, the workload closely approximates realistic resource-

sharing behaviors observed within RClIs.

Furthermore, to better reflect the temporal evolution of
collaborative projects, the simulation is divided into three
distinct phases:

e Ramp-Up (t = 0-39): The project experiences growth, with
more collaborators joining and a high volume of privilege-
sharing operations.

o Steady-State (t = 40 — 59): The project stabilizes at its
peak size, maintaining approximately 100 active users. The
rate of user additions and removals remains low, and while
sharing continues, its frequency begins to decline.

e Wind-Down (t = 60-99): The project gradually declines in
activity. Collaborators begin to leave, and privilege revoca-
tions (unshare) become more frequent than sharing.

To model the behavioral shifts across the different project
phases, the probabilities of operation types are dynamically
adjusted over time. For example, during the ramp-up phase, the
probability ratio of share to unshare operations is initialized at
70:30, emphasizing the predominance of privilege assignment
over revocation. Moreover, to simulate a gradual transition
from sharing-dominant to revocation-dominant behavior, this
ratio is progressively adjusted over time. Specifically, the
probabilities are linearly interpolated from 70 :30 to 30: 70
across successive 10-timestamp intervals, ensuring a smooth
behavioral shift that mirrors a natural and intuitive evolution
of collaborative workflows.

Each share and unshare operation executed at every times-
tamp is timed to capture the execution latency. We repeated
the entire experiment 10 times using different random seeds
to ensure statistical robustness and minimize the influence of
workload-specific variations. The experiments were conducted
on a VirtualBox VM running Ubuntu 22.04.3 LTS Server, with
8 CPU cores and 8GB RAM allocated. Python 3.10 was used
for code execution and timing measurements.

Evaluation Results. Table III presents the minimum, maxi-
mum, and average execution latencies for share and unshare
operations, aggregated over 10 experimental runs. On aver-
age, both operations exhibit a latency of approximately 300
milliseconds. Latency peaks under high-user-count conditions.
This increase is expected, as the underlying collaboration
network is more densely connected at this stage, requiring ad-
ditional traversal to accurately identify and update the relevant
collaboration context. Nonetheless, the overall low average

307

=

3

g 2| !

=

—

g

£ 10| o

3 —— latency(s)

)

[}j oL | —‘ #ops X 0.?153 | |
0 20 40 60 80 100

Timestamp (t)

Fig. 5: Total Execution Latency of CLEARS (Blue) and
Number of Operations (Red, Scaled) Across Project Timeline
(Timestamps 1-200), Averaged Over 10 Experimental Runs.

latency (consistently below 400 milliseconds) indicates that
these peak values are infrequent.

Furthermore, to evaluate the scalability of CLEARS, we
plotted the total execution latency (in seconds) in each times-
tamp alongside the number of operations (scaled by the
average latency of 0.315 seconds), as shown in Figure 5.
The close alignment between the two curves confirms a linear
scalability pattern—execution latency increases proportionally
with the number of operations, rather than exponentially.

Overall, these results suggest that maintaining an explicit
collaboration context, can be achieved with low and pre-
dictable overhead, well within acceptable limits for real-world
usage. This makes it feasible to integrate CLEARS’s constructs
into existing access control frameworks such as RBAC or
ABAC, enhancing them with collaboration-aware privilege
management without replacing their core mechanisms.

VI. CONCLUSION AND FUTURE WORK

In this work, we systematically investigated current access
control and resource sharing practices within RClIs, identified
key requirements, and introduced CLEARS as a systemic
framework for formalizing and managing collaboration con-
texts to support secure and flexible resource sharing. By
assigning privileges to well-defined collaboration contexts,
CLEARS provides a structured basis for consistent, context-
aware authorization decisions.

Future work includes extending CLEARS beyond a single
RCI environment by incorporating a multi-institutional per-
spective, as highlighted in prior work [13], to refine require-
ments under diverse regulatory and collaborative settings. We



also plan to investigate CLEARS’s operational concerns under
real-world deployment, such as race conditions, atomicity of
share/unshare operations, conflict resolution when multiple
actors intervene concurrently, and the security of system-level
mechanisms (e.g., JSON storage, setuid root helper). Addi-
tionally, we aim to conduct quantitative analyses of CLEARS’
worst-case complexity, including dense collaboration networks
and overlapping projects, and to design efficient data struc-
tures and algorithms for scalable deployment in real RCI
environments. Finally, incorporating feedback from potential
stakeholders through a user-validation study will be critical to
assessing the framework’s usability and acceptance.
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