Effectively Enforcing Authorization Constraints
for Emerging Space-Sensitive Technologies

Carlos E. Rubio-Medrano
Arizona State University
Tempe, Arizona, USA
crubiome@asu.edu

Ziming Zhao
Rochester Institute of Technology
Henrietta, New York, USA
ziming.zhao@rit.edu

ABSTRACT

Recently, applications that deliver customized content to end-users,
e.g., digital objects on top of a video stream, depending on infor-
mation such as their current physical location, usage patterns, per-
sonal data, etc., have become extremely popular. Despite their pro-
mising future, some concerns still exist with respect to the proper
use of such space-sensitive applications (S-Apps) inside indepen-
dently-run physical spaces, e.g., schools, museums, hospitals, me-
morials, etc. Based on the idea that innovative technologies should
be paired with novel (and effective) security measures, this paper
proposes space-sensitive access control (SSAC), an approach for re-
stricting space-sensitive functionality in such independently-run
physical spaces, allowing for the specification, evaluation and en-
forcement of rich and flexible authorization policies, which, be-
sides meeting the specific needs for S-Apps, are also intended to
avoid the need for interruptions in their normal use as well as
repetitive policy updates, thus providing a convenient solution for
both policy makers and end-users. We present a theoretical model,
a proof-of-concept S-App, and a supporting API framework, which
facilitate the policy crafting, storage, retrieval and evaluation pro-
cesses, as well as the enforcement of authorization decisions. In ad-
dition, we present a performance case study depicting our proof-of-
concept S-App in a set of realistic scenarios, as well as a user study
which resulted in 90% of participants being able to understand and
write authorization policies using our approach, and 93% of them
also recognizing the need for restricting functionality in the con-
text of emerging space-sensitive technologies, thus providing evi-
dence that encourages the adoption of SSAC in practice.

CCS CONCEPTS

« Security and privacy — Access control; - Human-centered
computing — Mixed / augmented reality;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SACMAT ’19, June 3—6, 2019, Toronto, ON, Canada

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6753-0/19/06...$15.00

https://doi.org/10.1145/3322431.3325109

Shaishavkumar Jogani
Arizona State University
Tempe, Arizona, USA
sjogani@asu.edu

Maria Leitner
AIT Austrian Institute of Technology
Vienna, Austria
maria.leitner@ait.ac.at

Gail-Joon Ahn
Arizona State University and
Samsung Research

gahn@asu.edu
KEYWORDS

Attributes; Authorization Policies; Space-Sensitive Access Control

ACM Reference Format:

Carlos E. Rubio-Medrano, Shaishavkumar Jogani, Maria Leitner, Ziming
Zhao, and Gail-Joon Ahn. 2019. Effectively Enforcing Authorization Con-
straints for Emerging Space-Sensitive Technologies. In The 24th ACM Sym-
posium on Access Control Models and Technologies (SACMAT °19), June 3-6,
2019, Toronto, ON, Canada. ACM, New York, NY, USA, 12 pages. https://doi.
org/10.1145/3322431.3325109

1 INTRODUCTION

Computing is nowadays transitioning from rigid stationary loca-
tions, e.g., warehouses, racks and desktops, to a so-called state
of ubiquity, where it can be exercised in many different physical
spaces thanks to recent advances in mobile hardware devices, loca-
tion-based services such as global positioning systems (GPS), and
dedicated support from operating systems and hardware-control
drivers. In this context, a plethora of software applications have
been recently developed to provide highly-customized content ba-
sed on input information they actively collect behind the scenes
from end-users, e.g., physical location, personal info, usage pat-
terns, etc., allowing for an enhanced experience and a closer mode
of interaction. Such applications, hereafter to be referred as space-
sensitive apps (S-Apps), depict an emerging trend that is likely to
stay at the present and future of all computing applications. Ex-
emplary S-Apps currently available in the market include, but are
not limited to the following: contemporary mapping apps such as
Google Maps [11], online social networks (OSNs) [9], mobile aug-
mented reality apps (MAR) [5] such as Pokémon GO [17], and even
the recently-introduced applications renting electric-based scoot-
ers [15], which have become increasingly popular in many cities
worldwide. All of these S-Apps display customized functionality
that varies significantly depending on location-based information,
and they are produced/supported by different, independently-run
companies, ultimately providing an enhanced experience that en-
courages end-users to explore their physical surroundings in an
active way.

Despite their recent success, some issues still remain concern-
ing the proper use of S-Apps inside independently-run physical
spaces that may be under the actual control of third-parties other
than the end-users themselves. As an example, concerns have been

https://doi.org/10.1145/3322431.3325109
https://doi.org/10.1145/3322431.3325109
https://doi.org/10.1145/3322431.3325109

raised about users playing S-Apps in places such as a WWII Mu-
seum in Germany [6], a park in Australia [4], as well as a 9/11
memorial in the United States [23]. Therefore, there is a need to re-
strict space-sensitive functionality in physical spaces for different
applications, users, devices, etc. Concretely, space owners, e.g., gov-
ernment agencies, homeowners, renters, etc., should be allowed to
restrict the functionality of any S-Apps in the spaces under their
control. Moreover, application developers, either individuals or or-
ganizations, may also want to restrict the functionality of their
S-Apps in some spaces, e.g., companies restricting their apps for
certain markets only such as North-America or Central Europe.

However, restricting space-sensitive functionality over physical
spaces impose a variety of interesting challenges: first, there is a
need to support the specification of a wide range of space-sensitive
functionality, which may include, but may not be limited to the
following: displaying digitally-created objects on top of a video
stream, playing customized audio files, activating the electric mo-
tors of a scooter, etc. Second, runtime information obtained from
different actors, namely, the S-Apps themselves, developers, mo-
bile devices, device manufacturers, and end-users, should be also
leveraged when deciding functionality restrictions. Third, there is
also a need to minimize updates on existing or new restrictions,
e.g., space owners should not be required to update their prefer-
ences every single time a new S-App hits the market. Fourth, end-
user interaction, e.g., managing permissions when approaching a
given space, should be also minimized, in an effort to prevent the
continuous disturbance of S-Apps that can result in frustration and
their consequent disregard by end-users. Finally, an approach for
restricting space-sensitive functionality must allow for both end-
users and developers to clearly and unambiguously specify restric-
tions at the same time implementations at the source-code level
are facilitated.

In order to solve these problems, this paper presents space-sen-
sitive access control (SSAC), a novel approach that introduces a new
dimension in authorization in order to restrict the space-sensitive
functionality offered by S-Apps in the context of multiple, indepen-
dently-run physical spaces. Our approach is based on precisely
modeling security-relevant information in the form of attributes
[12], an emerging paradigm that can support a range variety of
S-Apps, physical locations, mobile devices, as well as abstract con-
cepts such as time, thus effectively supporting the specification,
evaluation and enforcement of rich and flexible one-size-fits-all au-
thorization policies. In addition, our SSAC is intended to stay man-
ageable for end-users, policymakers and developers without the
need of extensive and comprehensive training in authorization top-
ics, thus enhancing its suitability for being deployed in existing and
future S-Apps.

With all this in mind, this paper makes the following contribu-
tions: first, we elaborate on the unique problems and challenges
introduced by emerging S-Apps and similar technologies aimed at
providing ubiquitous computing in the context of independently-
run physical spaces. Second, we provide SSAC, a novel authoriza-
tion approach that allows for S-Apps to become policy-governed
when it comes to render space-sensitive functionality, at the same
time it stays manageable for policy makers, end-users and develop-
ers. Third, we introduce a set of metrics for evaluating the runtime
performance of approaches tailored for restricting space-sensitive

functionality by means of authorization policies, which we then
use as a part of a series of a case study evaluating our SSAC ap-
proach. In addition, we also present the rationale behind and the
results of a user study focused on the ability of end-users to un-
derstand and write authorization policies using SSAC, which com-
bined provide evidence of the suitability of our proposed approach
to be fully deployed in practice.

2 RELATED WORK

2.1 Emerging Space-Sensitive Technologies

Research on security and privacy in the context of emerging space-
sensitive technologies has been growing recently. Roesner et al.
[21] proposed an approach that allows for real-world objects to
specify access control policies in the context of MAR. A trusted
security module senses these policies and adapts the views (video
streams) accordingly, e.g., stopping video recording in bathrooms
and removing bystanders from videos, introducing the concept of
passports to support policy authenticity (QR codes). While this ap-
proach focuses on the sensing of policies when mobile devices are
already up and running, it can be difficult to provide passports
in large or complex locations (stadiums, concert halls). Also, this
approach heavily depends on the video-based recognition perfor-
mance of the device. A similar approach by Jana et al. [13], in-
troduced dedicated placeholders known as recognizers, allowing
for S-Apps to be granted specific permissions specified by end-
users, thus ultimately restricting the space-sensitive functionality
by means of operating system calls. While serving as an inspira-
tion, these approaches do not handle the collection of security-
relevant information for the purposes of policy specification and
evaluation, which allows for extended flexibility and convenience,
as our approach does. In addition, our solution can be extended
to additional S-App technologies other than MAR and does not re-
quire any visible passports and centers to be placed in physical
locations.

2.2 Location-based Access Control

Location-based access control (LBAC) is mostly concerned with mak-
ing access control decisions using the current physical position of
end-users [8]. As an example, a doctor may be able to access patient
records when he/she is on the premise of a given hospital. Over the
years, many location-aware access control models have been devel-
oped. Ardagna et al. [1, 2] described an authorization model sup-
porting location-based conditions. However, such location-based
conditions are imposed on the location of the end-user itself but
not on a protected space as defined by a policy maker. Further-
more, location-aware models for role-based access control (RBAC)
[22] have been widely discussed in the literature. For example, the
GEO-RBAC model proposed by Damiani et al. [7] enhances the
RBAC model with spatial and location-based information, allow-
ing for spatial entities to model geographically bounded roles. In
a similar approach, Miettinen et al. [16] presented an approach
for automatically detecting the context a given user may be in,
based on information obtained from different sources, including lo-
cation as well as the set of other users that may be in the surround-
ings, in an attempt to automatically tailor authorization policies
based on the detected context. While extremely convenient, the

approaches just discussed have mostly focused on single-managed
spaces, which may support a small set of authorization policies
(mostly a single organizational one), and whose underlying autho-
rization model may not natively support the use of multiple pieces
of runtime information for making access decisions. Moreover, pre-
vious approaches also assume a well-trained cybersecurity official
may serve as a policymaker and may also supervise the deploy-
ment of the authorization enforcement mechanisms and auxiliary
systems. As it will be further discussed in Sec. 3, such an assump-
tion may not necessarily hold in the landscape of S-Apps.

3 PROBLEM STATEMENT

As introduced in Sec. 1, despite their recent success, functional-
ity of S-Apps has been deemed as inappropriate in different cases
observed in practice. As a running example, graphically shown in
Fig. 1, consider a sample gaming S-App, similar to the ones that
have been the subject of concerns in practice [6] [4] [23]. With
that in mind, there is a need for an approach that can effectively
describe space-sensitive functionality, e.g., digital objects, the dif-
ferent operations that can be performed over it, e.g., rendering
over a video stream, as well as any other security-relevant informa-
tion that becomes relevant within the context of a protected space,
e.g., information about the S-Apps themselves such as names, cat-
egories, time, etc.

Protected Spaces. A protected space can be defined as a physi-
cal space that can be either two dimensional such as plain surfaces
over terrain, or three dimensional such as building floors. In addi-
tion, protected spaces can be identified by means of GPS coordi-
nates, addresses, sites/markers (parks, schools, museums, etc.) or
by means of spatial ranges, (cities, states and countries).

Space Ownership. Space owners, e.g., homeowners, renters, gov-
ernment agencies, institutions, etc., can be also unambiguously re-
lated to a given space by an authority entity who can securely ver-
ify their identities at the city, state or nation-wide level, e.g., by
implementing a trusted verification/certification mechanism. For
the purposes of this paper, we assume the process of space own-
ership has been successfully performed beforehand, and therefore,
is deemed as out of scope.

Policy Makers. In addition, we also define two classes of policy
makers: first, space owners, which may want to restrict the func-
tionality of space-sensitive S-Apps under the physical spaces they
control. Second, application developers. which may also want to re-
strict the functionality of the space-sensitive S-Apps they produce
in a predefined set of spaces.

End-Users. Similarly, end-users are the human beings in con-
trol of S-Apps who are ultimately the target of customized space-
sensitive functionality while entering/leaving/staying at protected
spaces. In some contexts, end-users may also become policy mak-
ers themselves, assuming they have ownership rights over a pro-
tected space as mentioned before. However, for the purposes of this
paper, the sets of policy makers and end-users are not to intersect
with each other unless it is explicitly stated.

The Landscape of Emerging S-Apps. As illustrated by the
motivating examples described before, S-Apps introduce a set of
interesting challenges for providing authorization guarantees for

oY)

Space Owner End User

Protected Space

Figure 1: A graphical description of our problem statement:
a space owner wants to restrict the content that is displayed
by S-Apps on a given protected space (1). Later, an end-user
approaches the protected space with an S-App activated (2).
The S-App then displays digital content using the device’s
built-in video camera (3). Space owners should be able to ex-
press their preferences with respect to the space-sensitive
functionality that can be displayed under the protected
spaces they control.

our so-called protected spaces. First, there may exist multiple, het-
erogeneous, independently-run, protected physical spaces, each of
them possibly implementing their own security protection domain.
Second, each of these protected spaces may in turn implement their
own set of authorization policies, which may depict a variety (or
a combination) of classical authorization models, e.g., RBAC, etc.,
as well as emerging methodologies such as attribute-based access
control (ABAC) [12], which may be favored due to their exten-
sive support for the use of multi-source runtime information for
convenient and effective access mediation. Third, the authoriza-
tion domains of most of these protected spaces may be potentially
managed by end-users who may not have received proper training
in cybersecurity and/or computer science. As an example, small
schools willing to restrict the use of gaming S-Apps by technologi-
cal means (rather than simply issuing explicit prohibitions likely to
be disobeyed by students), may not have a dedicated cybersecurity
officer in place, but rather a school official that may have received
basic training to fulfill such a task, therefore requiring end-users
serving as policy makers to write policies protecting their physi-
cal spaces. In addition, end-users of S-Apps, e.g., students, may also
need to understand policies protecting the spaces they entered to
while using S-Apps, and they may also need to protect their sen-
sitive data while requesting for authorization in protected spaces.
As an example, students may not want to disclose unnecessary per-
sonal information to any authorization enforcement mechanism
that is in place in their school. Fourth, the authorization policies
in place for protecting physical spaces, as hinted before, may make
use of extensive runtime information obtained from a variety of
sources for the purposes of better describing the many different
access needs of heterogeneous, independently-run organizations
and individuals serving as space owners.

Limitations of Existing Attribute-based Models. Despite its
emerging popularity, existing ABAC-based paradigms, e.g., the ex-
tensible access control markup language (XACML) [19], may not
well-suited for the requirements we have just described. As an ex-
ample, XACML, despite being XML-based and therefore tailored
for both human and machine-based readability, is considerably com-
plex to be handled by end-users lacking extensive training in au-
thorization: its syntax, semantics, built-in functions, combining al-
gorithms, etc., represent a considerable challenge even for expert
policy makers [3], which may ultimately result in the introduction
of costly errors and omissions that may open the door for secu-
rity vulnerabilities and/or incidents. In addition, tool support for
XACML and other ABAC approaches is still in its infancy, as sup-
port for policy crafting, deployment, and enforcement must be pro-
vided from customizing existing APIs, which is not a straightfor-
ward task, requiring a considerable organizational and human ef-
fort. Finally, there is still no well-accepted description of ABAC in
the literature, just like the one other classical models benefit from,
e.g., RBAC [22]. As an example, there is still discussion on how to
properly represent attributes and model authorization constraints
[10], and how to support other classical authorization models with
an attribute-based approach [20].

4 OUR APPROACH: SPACE-SENSITIVE
ACCESS CONTROL FOR S-APPS

In order to solve the challenges and overcome the limitations just
presented, we now present SSAC, an effective, easy-to-understand,
easy-to-enforce model that 1) it is based on attributes, making it
flexible enough so it can be customized to meet the many differ-
ent authorization needs exhibited by independently-run protected
spaces; 2) it is efficient enough to model accurate authorization
needs, providing a tradeoff between permissive and strict policies
at the same time it can be enforced in practice without introduc-
ing noticeable performance, e.g., delaying the normal functioning
of S-Apps as a result of policy-enforcement routines; 3) it is ac-
cessible to end-users, e.g., home owners, building administrators,
etc., without extensive training in authorization and/or cybersecu-
rity topics; and, 4) it is convenient for developers of S-Apps, as it
provides well-defined foundations and a supporting implementa-
tion framework, thus relieving developers from having to imple-
ment such a new model from scratch. We start our discussion with
a general description of SSAC, including different components in-
volved and the relationships between them. Next, we elaborate on
the need for different participants within the context of S-Apps to
collaborate with each other in order to fully support it. Finally, we
round up the discussions introduced in this chapter by providing
a well-defined theoretical model.

4.1 Main Components of SSAC

Policy-governed S-Apps Using the SSAC we will further discuss
in this Section, S-Apps can become policy-governed by implement-
ing control logic to effectively restrict space-sensitive functional-
ity in the context of a certain protected space. Fig. 2 provides a
graphical depiction of our proposed solution: when approaching
a protected space, a policy-governed S-App, acting on behalf of

¢ .=
Policy Maker @ @

A
©) =

= A

End User

Protected Space

®©

Figure 2: A graphical description of our proposed policy-
governed S-Apps: a policy maker leverages our framework
to craft a policy over a protected space (1). Later, an end-user
approaches the protected space with an S-App activated, and
the current end-user current location is detected by a sen-
sor (2). The S-App then requests the framework for autho-
rization to provide functionality over the detected protected
space (3). Once aresponse is received, the S-App renders only
authorized functionality (4) (5).

the end-user, obtains information about the current physical loca-
tion, the S-App itself, and even the current end-user, and prepares
an authorization request, which is then forwarded to a supporting
implementation framework. Policy evaluation results are returned
back to the S-App, which implements control logic to provide only
authorized functionality, thus being effectively governed by the au-
thorizations decisions obtained in the context of a given space.

Attributes. As stated in Sec. 3, security-relevant information,
which may be obtained at runtime, can be leveraged for the pur-
poses of authorization, as the process of authorizing space-sensitive
functionality for S-Apps may certainly benefit from modeling such
security-related information in a concise and well-defined way. As
an example, syntax and semantics can be properly understood by
makers when crafting, evaluating and enforcing authorization poli-
cies. Lately, attributes [12] have been recognized as a convenient
way to represent security-relevant information that may be either
generated at runtime, e.g., the current time when a given policy
is to be evaluated, or may have been also generated beforehand,
e.g., a description of student membership issued by a university. In
our approach, we represent attributes as a 3-tuple consisting of the
following elements: 1) a datatype, which, as expected, defines the
type of data as well the range of values an attribute instance may
take. 2) a name, which uniquely identifies the attribute within the
context of a given implementation of our approach. 3) the set of
values, which represents a unique subset of the values defined by
the datatype component.

Following our running example introduced in Sec. 3, the over-
lapping of digital content over video streams can be modeled as

(ARDigitalObject, object. type, {*‘gaming.object’”}), where ARDi-
gitalObject is a custom-made type intended to model space-sen-
sitive functionality. In addition, a protected space can be defined by
a customized attribute of the form (GPSPolygon, campus, {“X,Y,W,Z"})
where GPSPolygon defines a spatial structure in the form polygon
composed of GPS coordinates, which are then labeled as X, Y, W,
and Z for illustrative purposes. Attributes may be in turn origi-
nated from different sources, e.g., external organizations/ institu-
tions, the S-Apps themselves, or even the supporting devices such
as smartphones. As an example, an attribute (String, app.name,
{*MyApp”}) can be provided by the corresponding S-App itself, and
collected at runtime when authorization is requested within a given
protected space.

Policies. Using attributes, authorization policies can be con-
structed for restricting functionality in space-sensitive S-Apps. In
our approach, we model access rights (permissions) by combining
attributes depicting space-sensitive functionality along with a set
of operations that can be performed over them. As an example, a
simple <allow> operation may be used to model an access right ef-
fectively allowing some customized functionality such as the afore-
mentioned (ARDigitalObject, object. type, {“‘gaming.object’”}). In
addition, the protected spaces can be specified using attributes, e.g.,
the (GPSPolygon, campus, {X,)Y,W,Z"}) attribute discussed before.
Moreover, policies define the attributes that are required for access
rights to be granted or denied. Returning to our running example,
a policy may combine the aforementioned attributes along with an
attribute depicting affiliation to a given university, e.g., (Member-
ship, associate. type, {“Student”}). This way, such a policy will
allow for digital objects to be displayed within the protected space
comprising a university campus only if the following are met: the
requested space-sensitive functionality matches the object.type at-
tribute described above, the protected space the end-user is located
at a given moment of time can be identified by the campus attribute,
and the end-user running the S-App happens to be an affiliated
student. As shown in Fig. 2, such attributes are to be collected at
runtime and forwarded to an implementation framework, along
with an authorization request, when the end-user approaches a
protected space with an S-App activated on a supporting device.

Attribute Catalogs and Transformations. SSAC, as just de-
scribed, requires a consensus on attribute names, data types, and
semantics, so consistency can be guaranteed within the context of
a given implementation, e.g., all involved participants should have
a clear understanding of the attributes being used, their semantical
context, as well as their originating sources, such that the autho-
rization process can be successfully conducted. In such a context,
some implementations may require for attributes to be asserted by
their originating sources, e.g., a university digitally signing an at-
tribute depicting student membership, in such a way that both the
origin and the integrity of such attributes can be better assessed.

Moreover, our proposed policy model differs from other appr-
aches considering attributes for authorization decisions such as
XACML. One of the major differences resides in the lack of sup-
port for specifying attribute-based constraints, e.g., requiring the
value of a given attribute to be within a certain range. We have
based such a design decision in the pursuit of a model that can be
easily understood by all participant actors, e.g., policy makers and

end-users, etc. However, there may be cases in which such con-
straints may be required. As an example, consider a policy that re-
quires end-users to be 21 or older of age. Also, assume an attribute
named enduser.age, which ranges over integer values starting from
0 all the way up to 120 !, is also available. This way, policy makers
leveraging our approach may need to enlist all attribute 3-tuples
ranging from 21 to 120 when crafting the aforementioned policy.
On the other hand, an alternative approach considering attribute-
based constraints may only require an expression of the form “en-
duser.age >= 217, thus significantly improving the convenience for
policy makers without sacrificing expressiveness.

In order to overcome these limitations, we propose establish-
ing a dedicated repository, hereafter referred as an attribute cata-
log, which includes standardized definitions for the attributes they
provide, e.g., names, data types, as well as a natural language de-
scription. In addition, such an attribute catalog may also introduce
attribute transformations that take some attributes as an input and
produce some other attributes as a result. As an example, a trans-
formation may be provided such the enduser.age attribute can be
turned into a (Boolean, enduser . ismajor, {“true”}) attribute if and
only if the value of the enduser.age attribute is equal or greater to
21. These attribute transformations can be in turn implemented in
practice as independently-developed modules, e.g., web services,
that can be dynamically selected and instantiated at will. Also, they
may be provided by either attribute sources, policy makers, or any
other trusted participant in the context of an implementation of
our approach.

Using attribute catalogs, not only a clear definition of attributes
is available, but also enhanced convenience and flexibility is pro-
vided. During policy specification time, makers can select the at-
tributes that better describe their authorization needs. In addition,
makers may also select a set of attribute transformations that may
ultimately produce the attributes listed in their policies. During
policy evaluation time, transformations may be automatically in-
stantiated, e.g., invoking a web service, based on the attributes in-
cluded in the evaluation request. If successful, any produced at-
tributes are returned and used to evaluate the policy as previously
described before in this paper.

Attribute Wallets and Bags. Following the policy evaluation
procedure depicted in Fig. 2, policy-governed S-Apps, on behalf of
end-users, are to collect all relevant attributes and forward them
for policy evaluation. In order to facilitate such a process, we pro-
pose the introduction of dedicated software modules known as at-
tribute wallets, which may be implemented as a submodule of our
policy-governed S-Apps or as an independent application running
on the end-user’s device, e.g., a smartphone. Using such wallets,
end-users may be able to store attributes issued on their behalf by
sources. Moreover, wallets may also allow for end-users to specify
their preferences with respect to a subset of the attributes included
within their wallets, which will be ultimately forwarded along with
an authorization request. Such subsets, hereafter referred as at-
tribute bags, provide end-users with a simple-yet-effective privacy
management scheme that may restrict the amount of personal info
that gets ultimately shared with policy evaluation engines at a
given time.

10r any other reasonable upper bound on human age as considered by the reader.

As an example, the aforementioned attribute depicting (Mem-
bership, associate. type, {“Student”}), may be issued by a univer-
sity on behalf of a given end-user, which then stores it inside an
attribute wallet. Later on, upon approaching the university’s pro-
tected space, the end-user may configure an attribute bag to re-
lease such an attribute for policy evaluation. This way, previously-
defined bags may allow for attributes to be used when evaluating
authorization policies, without requiring an interaction with an
end-user every single time, assuming attributes remain valid over
a certain period of time. In addition, in case authorization is de-
nied for a given protected space, end-users may interactively select
some other attributes from their wallets, assuming those attributes
were not included in previous attempts.

4.2 Collaborative Responsibilities

In order to fully support our policy-governed S-Apps as just de-
scribed, we envision a collaborative scheme in which different tasks
are distributed among participant actors in the context of S-Apps,
namely, policy makers, application developers, device manufactur-
ers and end-users. Such tasks can be either performed at runtime,
e.g., when authorization policy is to be evaluated, or offline, e.g.,
when a given S-App is constructed and released to the market.
Such tasks are enlisted next.

Policy Makers. First, policy makers should be allowed to spec-
ify authorization policies by selecting the attributes identifying the
protected spaces under their control, as well as the attributes iden-
tifying the S-Apps, developing sources, e.g., companies or organiza-
tions, devices, end-users, as well the space-sensitive functionality
that is to be authorized or denied. For such a purpose, policies are
to follow the authorization model that is described in Sec. 4.3.

S-App Developers. Second, application developers are to pro-
vide S-App-related attributes such as name, source and version for
the S-Apps they produce. In addition, they should also provide a de-
scription of the category (or categories) intended for their S-Apps,
e.g., games, educational, navigation, etc. Also, at runtime, when
the end-user approaches a protected space, S-Apps should also is-
sue authorization requests on behalf of the current end-user, im-
plementing a protocol that includes support for collecting the at-
tributes that will be forwarded as a part of the request, preparing
and issuing the request itself, and parsing any received authoriza-
tion results. Moreover, application developers should make sure
their S-Apps enforce authorization decisions, e.g., they only pro-
vide space-sensitive functionality as authorized by the evaluated
policy.

End-Users. Third, end-users should be allowed to store end-
user-related attributes such as credentials, memberships, etc., using
the attribute wallets introduced in Sec. 4.2. This way, these end-
user-related attributes can be eventually forwarded along with an
authorization request as described before. Also, end-users should
be allowed to create attribute bags, depicting the ones that may
be ultimately forwarded for authorization as just described. Fol-
lowing the approach for attribute wallets described before, such a
selection may be done in an offline mode, e.g., before a given S-App
is used, thus preventing a detriment of the space-sensitive experi-
ence as a result.

Protected
Spaces
(SP)

Objects
(0)

Subject
Attributes
(S-ATTRS)

Space
Attributes
(SP-ATTRS)

Operations

(OPER) Attributes

(O-ATTRS)

Environmental
Attributes
(ENV-ATTRS)

Figure 3: A theoretical authorization model for policy-
governed S-Apps: the sets of Protected Spaces (SP), Subjects
(S) and Objects (O) are mapped to the sets of Attributes: Space
(SP-ATTRS). Subject (S-ATTRS) and Object (O-ATTRS), re-
spectively, along with the set of Environmental Attributes
(ENV-ATTRS) and the set of Operations (OPER).

Device Manufacturers. Finally, device manufacturers are to
provide device-related attributes, e.g., brand name, model descrip-
tion, OS name, version, etc., in such a way that those can be later
leveraged by policy makers and S-Apps when specifying policies
and issuing authorization requests respectively. In the case of pol-
icy makers, proper descriptions on the attributes being offered for
a given device should be provided by manufacturers, e.g., using
the attribute catalog introduced in Sec. 4.1, such that semantically-
consistent policies can be produced as a result. For S-Apps, device-
related attributes should be available at runtime, so they can be
properly located and included as a part of an authorization request.

4.3 Theoretical Model

In order to better describe the ideas introduced in this paper, we
now present a theoretical model relating the elements considered
in SSAC can be combined together to define authorization policies,
e.g., how attributes may be used to define a given policy, and how
such a policy may be evaluated so access rights can be granted
or denied as a result. For illustrative purposes, Fig. 3 presents a
graphical depiction of the theoretical model we discuss next.
Composing Elements. Inspired in classical authorization the-
ory, we start by describing the different sets of elements composing
our approach. First, we define the set of protected spaces, which, as
discussed previously in this paper, are physical spaces in which
space-sensitive functionality may be displayed and/or restricted,
e.g., parks, hospitals, churches, etc. Next, we also introduce the sets
of subjects, comprising end-users as well as S-Apps and devices,
and the set of objects, which comprise space-sensitive functional-
ity elements should as visual digital items, video streams, audio
files, etc. Finally, we also elucidate the set of operations, denoted as

OPER, which either allow or deny the display of the elements in
the set of objects as described before.

Attribute Sets. Following the definition of attributes introduced
in Sec. 4.1, we now organize them into different sets with respect
to the composing elements described in the previous paragraph:
first, we consider the set of space attributes, denoted as SP-ATTRS,
which contains attributes related to the set of protected spaces, and,
as hinted before, may be defined as specialized attributes that iden-
tify those spaces in the context of a given implementation, e.g.,
GPS coordinates, location markers, etc., Next, we consider the set
of subject attributes, denoted as S-ATTRS, which encloses the sets
of device-related, end-user-related and S-App-related attributes as
discussed in Sec. 4.2. Also, we define the set of object attributes,
denoted as O-ATTRS, which includes attributes describing space-
sensitive functionality, e.g., identifiers, types, categories, etc. and
may be ultimately used for selecting space-sensitive functionality
to which operations may apply to, as described in Sec. 4.1. Finally,
we consider the set of environmental attributes, denoted as ENV-
ATTRS, which may contain all other attributes not included in the
sets above, and may include valuable attribute representations for
concepts such as time, counters, etc.

Attribute Equality. Leveraging the definition of attributes we
first introduced in Sec. 4.1, we define an attribute a to be equal to
another attribute ar if the following conditions are met: first, the
data type and the name components of both a and ar are the same,
and, second, the set of values of a is a subset of the set of values
defined for a, that is, values(a) C values(a’).

Attribute Catalogs. An attribute catalog C = (S-ATTRS, SP-
ATTRS, A-ATTRS, O-ATTRS, T) contains the sets of attributes, as
well as the set of attribute transformations T (defined below), that
are available within a given implementation.

Attribute Wallets and Bags. An attribute wallet W = (Syy,
SPw, Aw, Oy), is a 4-tuple listing subsets of the attributes con-
tained within a given catalog C, such that Sy, € S-ATTRS, SPy
C SP-ATTRS, Ay € A-ATTRS, and Oy C O-ATTRS, An attribute
bag B=Sg USPg UAp U Og is a subset of the attributes contained
within a given attribute wallet W, such that Sg C Sy, SPg C SPyy,
Ap C Aw, Op C Oy.

Attribute Transformations. An attribute transformation is
modeled as a mathematical function of the form ¢ : A — A, where
A is a powerset of S-ATTRS U SP-ATTRS U O-ATTRS U ENV-
ATTRS. An attribute transformation ¢ takes as an input a non-
empty set of attributes, labeled as input(t), and returns a possibly
empty set of output attributes, labeled as output(t), as a result.

Attribute Chains. Given a set of attribute transformations T
C T and an attribute bag B, an attribute transformation chain, la-
beled as chain(T¢, B), is a partial ordering in T¢ such that for 0 <
i < |Tc|and tj,ti+1 € chain(Tc, B), input(ti+1) C Bi, where B; = out-
put(t;) U Bj—1 and By = B. For a given chain(Tc, B), input(chain(Tc,
B)) = input(tp) U B and output(chain(T¢c, B)) = output(t,) for n =
(ITel - D).

Access Requests and Effective Attributes. An access request
R= (B, OPR) is a 2-tuple containing an attribute bag B along with an
operation OPgr C OPER. In addition, the set of effective attributes
for a given access request R = (B, OPR) and a set of attribute trans-
formations T is given by effective-attrs(R, Tc) = B U output(chain(Tc,

B)).

Authorization Policies. A policy POL is a 6-tuple listing sub-
sets of attributes contained within an attribute catalog C, such that
POL = (Sp, SPp, Ap, Op, OPp, Tp), where Sp C S-ATTRS, SPp C
SP-ATTRS, Ap C A-ATTRS, Op C O-ATTRS and Tp C T. Also, it
contains a subset of operations OPp € OPER.

Policy Evaluation Strategy. Finally, given a protected space S,
a policy POL restricting space-sensitive functionality on S, an at-
tribute catalog C = (S-ATTRS, SP-ATTRS, A-ATTRS, O-ATTRS, T),
and an access request R on S, Grant-Access(S, POL, R) is a boolean
function that evaluates to True iff OPp = OPg and Sp U SPp U Ap
U Op C effective-attrs(RTc) for some Tc C T. Otherwise, Grant-
Access(S, POL, R) returns False as a result.

5 EXPERIMENTAL EVALUATION

In this section, we start by describing a supporting authorization
framework as well as a proof-of-concept S-App, which we later
leverage for providing a case study tailored to evaluate the run-
time performance of SSAC. Later, we also describe a user study
that included the exposure of several participants to our approach,
ultimately resulting in evidence that supports the suitability of our
proposed approach to be successfully implemented in practice.

5.1 Proof-of-Concept Implementation

Our supporting authorization framework includes a dedicated API
for handling both policy administration and runtime policy evalua-
tion requests, allowing for the former to be used in an offline mode
by policy makers to properly add, change and remove policies,
whereas the latter may be used by S-Apps to issue authorization
requests at runtime when entering a given protected space. More-
over, our framework also includes a set of remote modules, which
implement policy storage and evaluation tasks, thus effectively re-
living S-Apps from having to implement those from scratch.

Protected Spaces. We model protected spaces by leveraging
the Google Maps API [11], e.g., a given protected space is repre-
sented as a set of GPS coordinates, a.k.a., a geo-spatial polygon.
Each protected space is also identified by a location marker, which
is then placed within the boundaries defined by its corresponding
polygon. Our framework leverages the Google Maps API to allow
for policy makers to interactively select their protected spaces us-
ing its map-like graphical user interface (GUI) capabilities to define
both polygons and location markers.

Authorization Requests. The authorization S-App-side API
depicted by our framework includes a set of Java method calls
implementing authorization requests, a.k.a., authorization checks,
which, as mentioned in Sec. 4.2, are to be placed by developers
within the source code of their S-Apps. As an example, an autho-
rization check of the form

Auth.request(new MARDigitalObject("pokestop"), bag);

may be used to request or authorization to display digital objects
known as pokestops, following the running example shown in Fig. 1.

Proof-of-Concept S-App. We have also implemented a proof-
of-concept gaming S-App, called SpaceProtector, whose snapshot
is shown in Fig. 4, in which end-users are encouraged to explore
their physical surroundings while capturing digital objects that are
displayed on top of a video stream, featuring an scenario similar

3 QD% 4 mos

Figure 4: SpaceProtector: A proof-of-concept S-App for SSAC.

to the one introduced in Figs. 1 and 2. SpaceProtector also lever-
ages Google Maps for geo-spatial operations, modeling protected
spaces as sets of GPS coordinates, and provides an attribute catalog
as well as an attribute wallet to assist end-users in writing autho-
rization policies and defining custom attribute bag configurations.
Finally, SpaceProtector handles authorization requests transpar-
ently to end-users by means of a back-end service implementing
SSAC, following the approach discussed in Sec. 4.

Policy Evaluation. In addition, our framework provides a pol-
icy decision point (PDP) module, which implements the policy eval-
uation strategy discussed in Sec. 4.3. For such a purpose, S-Apps
continuously communicate their physical location such that the
current protected space, if any, can be identified, leading to the sub-
sequent evaluation of all relevant policies once authorization is re-
quested. Such an strategy may become a performance bottleneck if
the physical location of the end-user changes rapidly with respect
to the functionality depicted by the S-App, and several authoriza-
tion requests may be issued as a consequence. In order to prevent
this situation, our framework implements an eager policy evalu-
ation strategy in which the policies related to nearby protected
spaces are fetched and evaluated beforehand, thus allowing for
S-Apps to store the policy evaluation results of nearby protected
spaces and use them when needed. We implement this eager strat-
egy by leveraging our so-called policy evaluation windows: a set of
GPS coordinates depicting a geo-spatial polygon surrounding the
current physical location of the end-user. This way, at a given mo-
ment of time, the policies related to all the protected spaces over-
lapping a given window are retrieved and evaluated in advance.
Once the current location changes beyond a certain pre-defined
distance, the window is recalculated and the policies of previously-
unseen spaces are evaluated as well.

5.2 Performance Case Study

Description. Using SpaceProtector, as well as our supporting
authorization framework implementing SSAC, we conducted a con-
trolled case study simulating an end-user playing with such an S-
App over a university campus, which was in turn enhanced with

a predefined set of protected spaces representing important build-
ings and a rest area, as it is graphically shown in Fig. 5 (a). In addi-
tion, each protected space was augmented with an authorization
policy closely resembling realistic scenarios tailored for each space.
As an example, academic buildings obtained policies restricting, ei-
ther partially or totally, the use of gaming S-Apps, whereas their
use was fully allowed at rest areas.

Timestamps. In order to collect runtime performance informa-
tion during our study, we instrumented the source code of both
our SpaceProtector S-App to obtain the following timestamps:
the entering space timestamp (Entering-Stamp, for short), which, as
the name implies, is obtained once an end-user, along with the cor-
responding device, enters a given protected space by the first time
having our S-App activated. In addition, we both obtained the au-
thorization request timestamp (S-App Request-Stamp), which is ob-
tained once the S-App requests our supporting framework for au-
thorization to display space-sensitive functionality, as well as the
authorization response timestamp (S-App Response-Stamp), once a
response containing an authorization decision is received. Then,
we also took the functionality deployment timestamp (Deployment-
Stamp), which represents the moment of time in which the S-App
renders or denies space-sensitive functionality based on the au-
thorization decision(s) just received. Conversely, we also instru-
mented our authorization framework to obtain the following times-
tamps: the server request timestamp (Server-Request-Stamp) and
the server response time (Server-Response-Stamp), which, as their
names imply, capture the moment when an authorization request
is received and subsequently served by sending a response back on
a given S-App.

Metrics. Using the timestamps just discussed, we introduced
the following performance metrics: initially, we calculate the server
response time (Server-Time) as the difference between the Server-
Response-Stamp and the Server-Request-Stamp. In addition, we
calculated the authorization processing time (AuthZ-Time) as the
difference between the Response-Stamp and the Request-Stamp
defined for S-Apps. In a similar approach, we also calculated the
authorization delay time (Delay-Time), which models the overall
delay taken by an S-App to render space-sensitive functionality
once entrance to a new protected space has been detected. Such a
metric was modeled by subtracting the Entering-Stamp from the
Deployment-Stamp defined for S-Apps. The relationship between
the aforementioned performance timestamps and metrics is graph-
ically described in Fig. 5 (b).

Modes. For our case study, we also defined three different usage
modes for our SpaceProtector S-App, in an effort to better assess
the capabilities depicted by SSAC as well as to provide a fair plat-
form for comparison when it comes to runtime performance. First,
we defined a no-authorization mode (No-AuthZ Mode), which, as
suggested by its name, implied the use of SpaceProtector with-
out any authorization-based functionality activated, that is, space-
sensitive functionality is automatically rendered as soon as a new
protected space is detected, thus ultimately simulating the stan-
dard runtime behavior exhibited by many S-Apps currently avail-
able in the market. Leveraging the discussion introduced in the
previous paragraph, our proposed No-AuthZ Mode depicted the
Server-Time as well as the AuthZ-Time all set to zero, as such
functionality was not provided as just mentioned. Second, we also

(a) An experimental testbed setting for SpaceProtector.

Server Server S-App S-App S-App S-App
Request Request Entering AuthZ AuthZ Functionality
Time Response Space Request Response Deployment
l Time Time Time Time Time
— —
Server S-App AuthZ
Response Time Processing Time
(Server-Time) (AuthZ-Time)
¢ 4
AuthZ Delay Time
(Delay-Time)

(b) Timestamps and metrics for evaluating S-Apps.

Figure 5: Experimental Testbed for Evaluating the Runtime Performance of SpaceProtector.

—a—Server-Time —0—AuthZ-Time —+—Delay-Time

5000

4500
4000
3500
3000

2500

TIME (MS)

2000

1500

1000 ¢
500

150 250 500 1000 1250 1500 _ 2000 2500 3000 3500
Server Performance Time

(a) Metrics for the Lazy Usage Mode.

«+— NO-Auth —<o—Lazy —+—Eager

5000
4500
4000
3800
g 3000
'-'Estoo
= 2000
1500
1000
500

ok p—— ey |

150 250 500 1000 1250 1500 2000 2500 3000 3500

Server Processing Time

(b) Comparing Different Usage Modes.

Figure 6: Experimental Results Depicting Runtime Performance of SpaceProtector.

defined an authorization lazy mode (Lazy Mode), which includes
SpaceProtector requesting our supporting framework for autho-
rization before rendering any space-sensitive functionality every
single time entrance to a new protected space is detected. Finally,
we also implemented an eager authorization mode (Eager Mode)
that besides leveraging the features of our supporting authoriza-
tion framework, also features the policy evaluation windows previ-
ously described in Sec. 5.1 to dynamically retrieve authorization de-
cisions for nearby protected spaces and store them into a dedicated
cache structure implemented by SpaceProtector, thus avoiding
frequent lengthy round-tripsto our supporting authorization frame-
work as depicted in the Lazy Mode just discussed. During the Ea-
ger Mode, all metrics, as discussed in previous paragraphs, were
calculated.

Procedures. As described before in this Section, our case study
involved an End-User traversing a series of protected spaces de-
termined by a university campus landscape. In such a process, the
simulated end-user would advance through a walking aisle as de-
picted in Fig. 5 (a), entering protected spaces once at a time. Upon
entering a new space, authorization for delivering space-sensitive
functionality would be requested (for the Lazy and Eager modes),
whereas no authorization would be performed for the No-AuthZ

Mode. When appropriate, the performance metrics also discussed
before will be collected. In such a context, the following parameters
were set beforehand: For the Lazy and Eager Modes, as well as for
each protected space, a single authorization policy, encoded in the
format described in Sec. 4 was defined, requesting for 4 attributes
as well as 1 attribute transformation before space-sensitive func-
tionality can be ultimately delivered to End-Users. In addition, for
the Eager Mode, the size of the policy evaluation window was set
to 20 meters, refreshing the authorization results stored in the in-
ternal cache implemented by SpaceProtector once the end-user
covers such a distance when walking. In addition, for the Lazy and
Eager Modes, we defined a variable parameter called server-side
processing time (Server Processing Time), which was intended to
provide a comprehensive modeling of the authorization process
performed by our supporting framework in the presence of large
number of stored policies as well as a large number of concur-
rent authorization requests being made by S-Apps. With that in
mind, such a Server Processing Time subsumes tasks related to
the location and retrieval of authorization policies, the evaluation
of such policies and the communication of the authorization de-
cisions, as well as the overall overhead caused by many different
concurrent requests, as mentioned before. For our case study, we

hosted our supporting authorization framework in a Dell Laptop
running Windows 10, with 16 GB of RAM and 1128 GB of HD stor-
age. In addition, our SpaceProtector S-App was hosted in a Moto
G4 mobile device running Android 7.0, with 2 GB of RAM and 16
GB of HD storage. Finally, we performed our case study during the
course of three days, performing 10 instances, e.g., a walk-through
traversing all the protected spaces from left to right as depicted in
Fig. 5 (a) each time. We obtained all the timestamps and metrics
related to the aforementioned usage modes, and calculated the av-
erage for all of them.

Results. Our results can be described as follows: Fig. 6 (a) shows
the results for the Lazy Usage Mode. As expected, the metrics Server-
Time, AuthZ-Time and Delay-Time show an increment that is pro-
portional to the increase in the server performance time, thus af-
fecting the overall performance of our SpaceProtector S-App, as
end-users may be able to experience a noticeable delay in the ren-
dering of space-sensitive functionality. Finally, Fig. 6 (b) shows the
Delay-Time metric for the three usage modes being evaluated. As
shown, the Lazy Mode incurs in the most significant increment,
which is proportional to the time taken by the authorization frame-
work to process requests at runtime every time a new protected
space is entered. In addition, the No-Auth and the Eager Modes in-
cur in a comparable performance detriment, as denoted by the sim-
ilar results obtained for the Delay-Time metric despite increments
in the server processing time, providing evidence supporting the
adoption of the Eager Mode by future S-Apps.

5.3 User Study

As mentioned in Sec. 3, SSAC may be ultimately used by individu-
als (either space owners or end-users) who may or may not have
received previous training in authorization. With that in mind, we
designed a user study to assess the policy understanding and writ-
ing of participants that may eventually become either policy mak-
ers (e.g., space owners) and end-users (e.g., gamers). Such a study
included the following research questions (RQ):

RQ1 Can participants understand drafted authorization
policies using SSAC?.
RQ2 Can participants write policies using SSAC?.

Our study was formally approved by an institutional review
board (IRB) office which oversees research integrity and ethics. In
the rest of this section, we present the experimental design as well
as the results of our study, which provide evidence of the suitabil-
ity of our approach for supporting the research questions just de-
scribed.

5.3.1 Participants. For our study, we recruited 30 participants
by placing an invitation script in different locations throughout
a university campus. From this sample, we were able to recruit
10 participants having some background in computer science (CS)
technologies, e.g., they were enrolled in a CS-related major, and 20
participants who self-reported having no formal background in CS-
related technologies or educational programs. Having no formal
background in CS-related studies was important to the study in
order to assess the potential for non-CS end-users.

5.3.2 Procedure. Our study was conducted in 5 sessions involv-
ing 6 participants each. Sessions were held in a seminar room at

Table 1: Policy Understanding. Option (1) is the correct one.

Policy 3
<allow>
(PSpace, space.location, {*Museum’})
(String, app. category, {"History”})
(space.GPSCoordenates) — (space.location)
(app.name) — (app.category)
Responses
The local museum wants to allow only apps having category “History” within
its facilities.
The local museum wants to deny all apps depicting any kind of content within
its facilities.
3 The local museum wants to allow all apps within its facilities.

Table 2: Policy Writing. Option (2) is the correct one.

Policy 2
“An alcoholic beverage producer wants to restrict its S-App AlcoApp only to
users who are equal or above 21 years old and physically located in the US”.
Responses
<deny>
(space. country, {USA™})
(user.isMajor, {*True”})
(app . name, {*AlcoApp”})
(user.age) — (user.isMajor)
<allow>
(space. country, {USA™})
(user.isMajor, {*True”})
(app. name, {“AlcoApp™})
(user.age) — (user.isMajor)
<allow>
(space. country, {“USA™})
(user.isMajor, {*True”})
(app.manufacturer, {*Western Drinks”})
(user.age) — (user.isMajor)
(app.name) — (app.manufacturer)

a university campus in the course of a week, one session per day.
Each session took about 70 minutes. Each participant received an
Amazon voucher for $20.00 USD for their participation. Each ses-
sion of the empirical evaluation consisted of 4 steps: introduction
and demonstration (25 minutes), policy understanding (15 minutes),
policy writing (15 minutes) and survey (15 minutes). Each step is
summarized in the following.

Step 1: Introduction and Demonstration. In the introduc-
tion, participants were presented an overview of the approach, sim-
ilar to Sec. 4. A short visual demo featuring the implementation
framework as well as the proof-of-concept SpaceProtector S-App
described earlier in this section was shown. Then, participants were
informed about the next steps: (2) policy understanding, (3) policy
writing and (4) survey.

Step 2: Policy Understanding. The second step aimed to ad-
dress RQ1. We provided three space-sensitive authorization poli-
cies encoded. For each policy, we provided three possible solutions,
and asked participants to select the one that most accurately resem-
bles the meaning of the authorization policy. One of the solutions
was specially crafted to be an exact match, thus depicting the right
answer to the question. The other two solutions were intention-
ally modified to be either more permissive, or more strict, e.g., by
deliberately allowing/denying S-Apps to display more/less func-
tionality within the protected space. An example policy is shown
in Table 1.

12 17 18
9
6 10 10 10
3
0 0 0
- = i
Sol 1 Sol 2 Sol 3 * Sol 1 Sol 2 * Sol 3 Sol1* Sol 2 Sol 3
Policy 1 Policy 2 Policy 3
CS @Non-CS

(a) Step 2: Policy Understanding.

30
27
24
21
18
15

? 13
¢ o 10
i Ex
. B om : -
0 — 2 2
Sol1* Sol 2 Sol 3 Sol 1 Sol 2 * Sol 3 Sol1* Sol 2 Sol 3
Policy 1 Policy 2 Policy 3
CS mENon-Cs

(b) Step 3: Policy Writing.

Figure 7: User Study Results. Correct Solutions are depicted with an Asterisk (%).

Step 3: Policy Writing. This step aimed to address RQ2 on
policy writing. We provided three descriptions of space-sensitive
authorization policies, and, for each of them, we provided three
candidate encodings. This time, participants were required to se-
lect the encoding that would better match the description of each
policy. Similar to the previous step, we included a correct encoding
accurately matching the policy semantics, and included two other
encodings, a permissive and a more strict one. Participants were
provided with a list of operations and attributes to choose from,
thus resembling an attribute catalog as it was described in Sec. 4 as
well. An example policy is shown in Table 2.

Step 4: Survey. Finally, participants were asked to fill out a sur-
vey containing five questions regarding (1) their familiarity with
S-App technologies, (2) their acceptance for implementing autho-
rization techniques in the context of S-Apps, (3) their interest in
implementing the proposed approach for authorization in the con-
text of S-Apps, (4) their perception on well they believe they under-
stood our proposed approach and (5) further comments, remarks
and improvements to the approach.

5.3.3 Results. We summarize the findings of the study next.

Participants Background and Appreciation. The background
and some results of the survey can be described as follows: first,
67% of all participants expressed a moderate to high degree of fa-
miliarity with S-App technologies. Hence, more than two thirds
have had already experience with S-App technologies. As described
in Section 5.3.1, only one third had a CS background (10 out of 30).
Second, 87% of all participants agreed there is a need for authoriza-
tion mechanisms in the context of space-sensitive S-App scenarios.
In addition, 93% of all participants expressed an interest in restrict-
ing functionality of S-Apps inside a given protected space. Hence,
the participants recognized the need for authorization mechanisms
in S-App scenarios. Even more, they would be interested to use and
apply such an approach. This supports our ideas and proof of con-
cept that there is a need for authorization in S-App scenarios and
users would be interested in it. Finally, 83% of all participants ex-
pressed a high degree of understanding of our proposed approach,
which complement the results obtained for Steps 2 and 3 and pro-
vide additional evidence of the suitability of SpaceProtector for
being deployed in practice.

Based on these highly motivating results, lets take a look into
the detailed results of Steps 2 and 3.

RQ1: Can participants understand policies? To answer RQ1,
we conducted Step 2 on policy understanding. The results are shown
in Fig. 7 (a). It can be seen from the figure that most participants
were able to select the correct answer for all three depicted policies.
Participants with CS background chose the correct solution all the
time, whereas Non-CS participants did select a few incorrect an-
swers. In total, more than 85% of the participants could identify
the correct answer for all three policies.

RQ2: Can participants write policies? Similar results were
obtained for RQ2 on policy writing as shown in Fig. 7 (b). It can
be seen from the figure that the majority of participants were able
to select the correct solution. This time, however, a few CS and
Non-CS participants failed to select the correct solution for Policy
2, shown in Table 2. This policy was more complex as it required a
selection of both attributes and transformations which might have
been more challenging for the participants. On the other hand,
the formulation of the policy itself ".wants to restrict its S-App Al-
coApp.." might have led participants to believe either to deny (Solu-
tion 1) or allow (Solution 2) this certain policy. Solution 3 refers to
"Western drinks” which are not mentioned in the formulated pol-
icy. However, to fully understand the motivation more research
and tests for policy writing are required. Finally, the findings of the
user study support the assumptions, expressed earlier in this paper,
that end-users can understand and write authorization policies for
space-sensitive scenarios, following the challenges that have been
devised in previous work [14]. Further research and investigation
has to be conducted for formulating policies in natural language
and how to map them into specific attributes.

6 DISCUSSION AND FUTURE WORK

Space Ownership. As introduced in Sec. 3 and Sec. 4.1, we aim for
space owners to specify policies restricting space-sensitive func-
tionality over their corresponding protected spaces, which then
introduces the question of who can be regarded as the rightful
owner of a given physical space. Whereas such a topic has been
deliberately left out of the scope of this paper, we believe space
ownership may be established offline by an authority entity, who
besides being able to assess the identity of the space owner, may

also effectively locate the boundaries of a given protected space,
e.g., by providing any attributes that may better identify it, and
is also able to resolve multi-tenancy issues, e.g., two or more or-
ganizations/individuals claiming ownership over the same space.
Future work may then focus on implementing a solution for deter-
mining space ownership as just described, at the same time it also
supports delegation, e.g., property landlords delegating to renters,
or organizations delegating to some departments control over a
certain protected space.

Attribute Catalogs and Transformations. In addition, future
work may also focus on extending our proposed attribute catalogs
to include more attribute descriptions as well as transformations.
Asitisdescribed in Sec. 4.2, we expect other collaborative organiza-
tions to make such attributes available for the generation of both
attribute catalogs and transformations, thus ultimately resulting
in a large variety of options policy makers may choose from. In
such regard, Google has recently transitioned into a dedicated se-
curity framework called BeyondCorp [24], which leverages pieces
of security-related information, similar to our proposed attributes,
for making authorization decisions. Based on this, we believe the
use of attributes for authorization decisions is in its way to become
widespread, as organizations will certainly appreciate the benefits
provided by their convenience and flexibility, as we have discussed
previously in this paper.

Policy Enforcement. As shown in Sec. 4, SSAC allows for de-
velopers to take into account potential authorization decisions to
regulate functionality within their S-Apps, which requires devel-
opers to insert proper API calls within their source code when
appropriate. In such a context, SSAC introduces a convenient al-
ternative for automatically handling requests for restricting space-
sensitive functionality, which are currently mostly handled on a
semi-automated, one-by-onebasis [18]. This way, developers would
be relieved from having to provide dedicated authorization infras-
tructure from scratch, and space owners would be also relieved
from having to learn a new paradigm and repeat the process for
every S-App that hits the market and becomes relevant. Future
work may then focus on providing enhanced support for policy en-
forcement by inspecting technologies for content filtering at the
OS level, allowing for our approach to be efficiently integrated
with existing and newly-developed S-Apps, while still maintaining
enough flexibility so developers can decide how they will react to
authorization decisions at runtime.

7 CONCLUSIONS

In this paper, we have elaborated on the security challenges im-
posed by emerging S-App technologies, including the need for spa-
ce owners as well as application developers to specify and enforce
restrictions on what space-sensitive functionality is acceptable un-
der certain physical spaces. In order to address such challenges,
we have proposed a collaborative authorization framework inte-
grating organizations, application developers, device manufactur-
ers and end-users, providing rich and flexible support to handle
different cases and needs by leveraging attribute-based policies. Fi-
nally, as depicted by the encouraging results obtained during the
studies we have presented as a part of this paper, we believe our

approach may be able to accommodate for other emerging space-
sensitive technologies that are introduced in the future.

ACKNOWLEDGMENTS

This work was partially supported by grants from the National Sci-
ence Foundation (NSF-IIS-1527268 and NSF-ACI-1642031).

REFERENCES

[1] C. A. Ardagna, M. Cremonini, E. Damiani, S. De Capitani di Vimercati, and P.
Samarati. 2006. Supporting Location-based Conditions in Access Control Poli-
cies. In Proc. of the Sym. on Info., Computer and Communications Security (ASI-
ACCS '06). ACM, New York, NY, USA, 212-222.

C. A. Ardagna, M. Cremonini, S. De Capitani di Vimercati, and P. Samarati. 2009.

Access Control in Location-Based Services. In Priv. in Location-Based Applica-

tions. Number 5599 in Lecture Notes in Computer Science. Springer, 106-126.

[3] Steffen Bartsch. 2011. Authorization Enforcement Usability Case Study. In Engi-
neering Secure Software and Systems, U. Erlingsson, R. Wieringa, and N. Zannone
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 209-220.

[4] BBC.2017. Pokemon Go away: Troublesome Sydney Pokestop shut down. http://
www.bbc.com/news/technology-36948331. (2017). [Online; accessed June-22-
2017].

[5] Julie Carmigniani, Borko Furht, Marco Anisetti, Paolo Ceravolo, Ernesto Dami-
ani, and Misa Ivkovic. 2011. Augmented Reality Technologies, Systems and Ap-
plications. Multimedia Tools Appl. 51, 1 (Jan. 2011), 341-377.

[6] Daily Sabah Europe. 2017. Germany’s Auschwitz-Birkenau Museum
says no Pokemon Go. http://www.dailysabah.com/europe/2016/07/14/
germanys-auschwitz-birkenau- museum-says-no-pokemon-go. (2017). [On-
line; accessed June-5-2017].

[7] M. L. Damiani, E. Bertino, B. Catania, and P. Perlasca. 2007. GEO-RBAC: A Spa-
tially Aware RBAC. ACM Trans. Inf. Syst. Secur. 10 (Feb. 2007).

[8] M. Decker. 2008. Requirements for a Location-based Access Control Model.

In Proc. of the 6th Int. Conf. on Advances in Mobile Computing and Multimedia

(MoMM °08). ACM, New York, NY, USA, 346-349.

Facebook Inc. 2018. Facebook for Developers. https://developers.facebook.com/.

(2018). [Online; accessed November-22-2018].

[10] M. Fernandez and B. Thuraisingham. 2018. A Category-Based Model for ABAC.
In Proceedings of the Third ACM Workshop on Attribute-Based Access Control
(ABAC’18). ACM, New York, NY, USA, 32-34.

[11] Google Inc. 2017. Google Maps APL https://developers.google.com/maps/.
(2017). [Online; accessed July-14-2017].

[12] V.C.Hu,D.Ferraiolo, R. Kuhn, A. Schnitzer, K. Sandlin, R. Miller, and K. Scarfone.
2014. Guide to attribute based access control (ABAC) definition and considera-
tions. NIST Special Publication 800 (2014), 162.

[13] S.Jana, D. Molnar, A. Moshchuk, A. Dunn, B. Livshits, H. J. Wang, and E. Ofek.

2013. Enabling Fine-grained Permissions for Augmented Reality Applications

with Recognizers. In Proc. of the 22Nd USENIX Conf. on Security. 415-430.

K. Lebeck, K. Ruth, T. Kohno, and F. Roesner. 2018. Towards Security and Privacy

for Multi-user Augmented Reality: Foundations with End Users. In 2018 IEEE

Symposium on Security and Privacy (SP). 392-408.

[15] Lime, Inc. 2018. Lime Dockless Electric Scooter Share. https://www.li.me/
electric-scooter. (2018). [Online; accessed November-26-2018].

[16] M. Miettinen, S. Heuser, W. Kronz, A. Sadeghi, and N. Asokan. 2014. ConXsense:
Automated Context Classification for Context-aware Access Control. In Proc. of
the ACM Symp. on Info., Comp. and Comm. Sec. (ASIA CCS ’14). ACM, 293-304.

[17] Niantic, Inc. 2017. Pokemon GO. http://www.pokemongo.com/. (2017). [Online;

accessed June-5-2017].

Niantic, Inc. 2018. Request Modification for Pokemon GO. https://goo.gl/

uSZ1hP. (2018). [Online; accessed November-28-2018].

[19] OASIS Standard. 2013. eXtensible Access Control Markup Language (XACML)

Version 3.0. (2013, January 22). (2013). http://docs.oasis-open.org/xacml/3.0/

xacml-3.0-core-spec-os-en.html.

Q. M. Rajpoot, C. Damsgaard Jensen, and R. Krishnan. 2015. Attributes Enhanced

Role-Based Access Control Model. In Int. Conf. on Trust, Privacy and Security in

Digital Business (TrustBus).

[21] F. Roesner, D. Molnar, A. Moshchuk, T. Kohno, and H. J. Wang. 2014. World-
Driven Access Control for Continuous Sensing. In Proc. of the Conf. on Computer
and Communications Security (CCS '14). ACM, New York, NY, USA, 1169-1181.

[22] R.S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. 1996. Role-Based

Access Control Models. Computer 29, 2 (Feb. 1996), 38-47.

Time. 2017. Pokemon Go Players Anger 9/11 Memorial Visitors. http://time.

com/4403516/pokemon-go-911-memorial-holocaust-museum/. (2017). [Online;

accessed June-5-2017].

[24] R. Ward and B. Beyer. 2014. BeyondCorp: A New Approach to Enterprise Secu-
rity. ;login: Vol. 39, No. 6 (2014), 6-11.

[2

=

=

[14

[18

[20

[23

http://www.bbc.com/news/technology-36948331
http://www.bbc.com/news/technology-36948331
http://www.dailysabah.com/europe/2016/07/14/germanys-auschwitz-birkenau-museum-says-no-pokemon-go
http://www.dailysabah.com/europe/2016/07/14/germanys-auschwitz-birkenau-museum-says-no-pokemon-go
https://developers.facebook.com/
https://developers.google.com/maps/
https://www.li.me/electric-scooter
https://www.li.me/electric-scooter
http://www.pokemongo.com/
https://goo.gl/uSZ1hP
https://goo.gl/uSZ1hP
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
http://time.com/4403516/pokemon-go-911-memorial-holocaust-museum/
http://time.com/4403516/pokemon-go-911-memorial-holocaust-museum/

	Abstract
	1 Introduction
	2 Related Work
	2.1 Emerging Space-Sensitive Technologies
	2.2 Location-based Access Control

	3 Problem Statement
	4 Our Approach: Space-Sensitive Access Control for S-Apps
	4.1 Main Components of SSAC
	4.2 Collaborative Responsibilities
	4.3 Theoretical Model

	5 Experimental Evaluation
	5.1 Proof-of-Concept Implementation
	5.2 Performance Case Study
	5.3 User Study

	6 Discussion and Future Work
	7 Conclusions
	Acknowledgments
	References

