
By the Numbers: Towards Standard Evaluation Metrics for
Programmable Logic Controllers’ Defenses

Efrén López-Morales
elopezmorales@islander.tamucc.edu
Texas A&M University-Corpus Christi

Corpus Christi, TX, USA

Jacob Hopkins
jhopkins2@islander.tamucc.edu

Texas A&M University-Corpus Christi
Corpus Christi, TX, USA

Alvaro A. Cardenas
alacarde@ucsc.edu

University of California, Santa Cruz
Santa Cruz, CA, USA

Ali Abbasi
abbasi@cispa.de

CISPA Helmholtz Center for
Information Security

Saarbrücken, Saarland, Germany

Carlos Rubio-Medrano
carlos.rubiomedrano@tamucc.edu

Texas A&M University-Corpus Christi
Corpus Christi, TX, USA

Abstract
Our modern society relies on important utility infrastructures such
as water treatment plants and electric energy distribution grids.
These infrastructures are managed by Industrial Control Systems
(ICS), which include devices such as sensors, actuators and Pro-
grammable Logic Controllers (PLCs). PLCs are a key component
of ICS as they serve as a bridge connecting the cyber and physical
worlds. A cyberattack on a PLC could have disastrous real-world
consequences, such as longstanding energy blackouts.

Researchers have produced a plethora of security defenses in
order to safeguard PLCs from cyberattacks, e.g., PLC-specific In-
trusion Detection Systems (IDS). However, most of these defenses
report incomplete or no performance evaluation metrics. Worse,
the defenses that do report metrics evaluate them in an, ad-hoc way
without providing details. As a consequence, PLC defenses cannot
be compared or built upon, which is one of the main ways science
progresses. It also makes it difficult to assess the effectiveness of
such defenses against attacks.

In this paper, we propose a standard set of performance evalu-
ation metrics designed specifically for PLC security defenses. We
propose three types of metrics: security, overhead, and effective-
ness metrics. We then lay out what are the challenges faced when
collecting these metrics, e.g., the heterogeneity of PLC architec-
tures, and provide recommendations on how these challenges can
be addressed to obtain accurate metrics. Obtaining and reporting
these metrics will enable researchers to move PLC security research
forward ultimately improving the security of ICS and our critical
infrastructure.

CCS Concepts
• Computer systems organization → Embedded software;
Embedded and cyber-physical systems.

This work is licensed under a Creative Commons Attribution
International 4.0 License.

RICSS ’24, October 14–18, 2024, Salt Lake City, UT, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1226-5/24/10
https://doi.org/10.1145/3689930.3695204

Keywords
Programmable Logic Controllers, Cyber-Physical Systems, Indus-
trial Control Systems, Security
ACM Reference Format:
Efrén López-Morales, JacobHopkins, AlvaroA. Cardenas, Ali Abbasi, and Car-
los Rubio-Medrano. 2024. By the Numbers: Towards Standard Evaluation
Metrics for Programmable Logic Controllers’ Defenses. In Proceedings of the
2024 Workshop on Re-design Industrial Control Systems with Security (RICSS
’24), October 14–18, 2024, Salt Lake City, UT, USA. ACM, New York, NY, USA,
9 pages. https://doi.org/10.1145/3689930.3695204

1 Introduction
Industrial Control Systems (ICS) underpin the infrastructure of
many of the utilities that we use on a daily basis, from water treat-
ment plants to nuclear power facilities. One of the most important
elements of ICS are Programmable Logic Controllers (PLCs) [25].
PLCs control physical processes by reading sensor inputs and exe-
cuting control logic to produce outputs destined for actuators.

PLCs have been the target of multiple cyberattacks, including
Stuxnet [25], Industroyer [48], and IronSpider [45]. In order to se-
cure PLCs from such attacks, extensive research has been conducted
on developing defensive security methods or simply defenses, e.g.,
control-flow integrity (CFI) methods that defend against control-
flow hijacking attacks [2]. However, currently, the PLC security
literature is facing a reproducibility crisis. A recent study found that
only 16% of PLC research papers included any research artifact,
let alone functionality or reproducibility [39]. Without the ability
to reproduce vulnerabilities and attacks in PLCs, it becomes more
difficult for researchers to further investigate and develop counter-
measures. This represents a major research gap within the current
literature that needs to be addressed. There are two main ways to
overcome the reproducibility gap: research artifacts and standard-
ized evaluation metrics. Currently, few PLC security articles include
research artifacts of any kind [39]. Some reasons for the lack of pub-
lic PLC security research artifacts include funding and distribution
restrictions [59]. Consequently, despite the importance of sharing
PLC research artifacts, an alternative that allows researchers insight
into other PLC research is needed. This alternative is standardized
performance evaluation metrics.

Standardized performance evaluation metrics would allow PLC
security methods to be experimentally compared to each other,

https://orcid.org/0009-0001-4014-4776
https://orcid.org/
https://orcid.org/
https://orcid.org/
https://orcid.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3689930.3695204
https://doi.org/10.1145/3689930.3695204


RICSS ’24, October 14–18, 2024, Salt Lake City, UT, USA Efrén López-Morales, Jacob Hopkins, Alvaro A. Cardenas, Ali Abbasi, and Carlos Rubio-Medrano

which is not readily done due to the reproducibility issue in PLC se-
curity research. Also, standardized evaluation metrics would prove
to be an alternative to having access to the original research arti-
facts because relaying the results of these metrics would be simpler
than sharing the research artifacts. However, this requires the orig-
inal PLC defense paper to share clear evaluation metrics that can
be compared. Regrettably, there are very few reported evaluation
metrics for PLCs, standard or otherwise. This is not a new problem;
in 2021, Sun et al. recommended the development of PLC security
benchmarks [56], and in 2024, Lopez-Morales et al. again recom-
mended that PLC security papers report evaluation metrics [39].

With that in mind, we ask the following research questions:
Q-1 What are the key evaluation metrics for PLC security

defenses?
Q-2 What are the challenges in obtaining these evaluation

metrics?
Q-3 How can these challenges be addressed?

In this paper, we aim to address these questions by introducing
a set of quantitative performance evaluation metrics that will allow
us to compare PLC defenses even if the corresponding research
artifacts are not available. Specifically, we propose three sets of
evaluation metrics: security, overhead, and effectiveness metrics.
Security metrics will evaluate well-established security principles
and techniques, e.g., the Principle of Least Privilege. For example,
whether the defense increases (o decreases) the attack surface of the
ICS in which the PLC resides. Conversely, Effectiveness metrics will
measure how well the defense accomplishes its task. For example,
if the defense performs anomaly detection, then its effectiveness
can be measured by its accuracy. Finally, Overhead metrics will
measure how expensive it is for the PLC to run the defense method.
For example, increasing the PLC scan cycle time.

In addition, we point out challenges that researchers might en-
counter when measuring our proposed metrics. For example, due
to the variety in PLC’s architecture it is difficult to find the re-
quired benchmarking tools that measures an specific metric. Fi-
nally, we provide recommendations on how these challenges can
be addressed so that quality metrics can be obtained and reported.

2 Background
This section introduces key background concepts including PLCs,
PLC architecture, PLC security defenses, existing evaluation met-
rics, and profiling and benchmarking.

2.1 Programmable Logic Controllers
A Programmable Logic Controller (PLC) is a small industrial com-
puter designed to run control logic based on input provided by
sensors such as temperature sensors. PLCs control complex in-
dustrial processes, making them ubiquitous in ICS and SCADA
environments [15]. Popular PLC manufacturers include Siemens,
Rockwell and Wago [39].

PLCs can be categorized as HardPLCs and SoftPLCs [39]. A Hard-
PLC is a traditional PLC which includes proprietary software are
hardware with an unknown architecture, for example, the Siemens
S7-300 PLC. SoftPLCs on the other hand provide a portable soft-
ware runtime environment that executes control logic programs,
for example, programs that follow the IEC 61131-3 standard [58].

SoftPLCs are portable and compatible with multiple hardware
such as Raspberry Pis [43]. The two leading SoftPLC platforms
are CODESYS [21] and OpenPLC [43].

2.2 PLC Architecture
In general, PLCs have the basic components depicted in Fig. 2. We
now describe each component and their security characteristics.

Control Logic. A control logic program contains the instruc-
tions that the PLC executes to interact with its environment. Mod-
ern control logic programs follow the IEC 61131-3 standard [58] and
are written in one of the standard’s supported languages, e.g., Struc-
tured Text. Depending on the PLC platform, control logic can be
compiled into machine code before runtime or it can be translated
to machine code during runtime via just-in-time compilation [12].
For example CODESYS’ control logic is compiled before runtime
and Siemens’ PLCs compile control logic during runtime [31].

Runtime Environment. The runtime environment executes
the control logic [26] and interacts with the Input/Output mod-
ules. It can be proprietary, e.g., CODESYS, or open source like the
OpenPLC runtime [7].

Operating System. Most PLCs have a Real-Time Operating
System (RTOS) [55]. RTOS are operating systems that meet strict
processing time requirements and support real-time applications.
Vendors support a variety of RTOS in their platforms. For example,
the Siemens S7-1200 PLC uses the Linux-based ADONIS RTOS [3].
However, new runtime options such as OpenPLC run on top of
non-RTOS such as Raspian and Windows [42].

Firmware. The firmware bridges the gap between the PLC hard-
ware and software. While simple PLCs might run applications as
bare metal (without an OS) [14, 63], modern PLCs use the firmware
under an RTOS.

CPU. The CPU interprets the input signals and executes the logic
instructions saved in memory. PLCs use different CPU or processor
cores depending on the manufacturer and model. Some PLCs, such
as theWago PFC200, include an ARMCortex A8 processor core [60]
while other PLCs might use real-time processors such as the Cortex-
R processor family [9].

Memory. It stores the program that the CPU will execute along
with input data. Depending on the PLC processor, memory is pro-
tected by either a Memory Management Unit (MMU) or a Memory
Protection Unit (MPU) [57].

NetworkModule.Modern PLCs have one or more ports to com-
municate with the supervisory control network (regular computers
monitoring the process) or fieldbus (actuators and sensors).

Physical I/OModules. These include input modules with metal
pins that receive information (via a voltage or current analog signal)
from sensors. The output modules send analog data to actuators
such as servo motors.

PLC Scan Cycle. The PLC scan cycle refers to the cyclic ex-
ecution of the PLC control logic, reading inputs, and updating
outputs [5]. The control logic contains a set of executable tasks,
which vary in size and nature. These tasks affect the scan cycle
time based on performance and configuration [29]. The scan cycle
time can vary depending on several factors, including control logic
program complexity, I/O load, and communication tasks [47].



By the Numbers: Towards Standard Evaluation Metrics for Programmable Logic Controllers’ Defenses RICSS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Figure 1: Distribution of 70 PLC security defenses and their
reported evaluation metrics. Encompasses PLC security re-
search literature from 2007 to 2023. Effectiveness metrics
include accuracy and false positives. Overhead metrics in-
clude CPU and scan cycle overhead.

2.3 PLC Security Defenses
As of 2023, the security community has produced approximately
70 PLC defenses [39]. These include a wide array of approaches
such as anomaly detection [5, 37, 49], intrusion detection systems
(IDS) [27], and vulnerability patching [47] just to mention a few.

To implement these defenses, different components of the PLC,
discussed in Sec. 2.2, need to be modified. For example, ECFI, a
control flow integrity (CFI) defense, modified the PLC runtime us-
ing assembly code instrumentation [2]. Other defenses utilize the
PLC network module to implement their approach. For example,
Snapshotter, an IDS, introduces an IDS agent between the PLC and
a server [30]. Regardless of the PLC component that a particular
defense modifies, these modifications might introduce undesirable
side effects such as additional CPU processing, increased privileged
processes, or false positives, among others [2]. This is where perfor-
mance evaluation metrics come into the picture. We can use these
metrics to quantify the performance of a particular PLC defense.

2.4 Existing Evaluation Metrics
Multiple metrics have been used to evaluate PLC defenses through-
out the years. These include scan cycle overhead, CPU overhead,
false positive rate, and accuracy. As depicted in Fig. 1, more than
half of PLC defenses in the literature did not report any evaluation
metrics and the ones that do report either overhead, e.g., CPU over-
head, or effectiveness metrics, e.g., false positives. Only 6 or 8.5%
of all PLC defenses in the literature reported both. Worse, as far
as we know, there is only one PLC defense that reported security
evaluation metrics, namely, D-Box [41].

In addition to the metrics discussed above, there are two works
that introduced metrics relevant to PLCs that informed this re-
search.

BenchIoT Metrics. BenchIoT is an open-source benchmarking
tool designed for IoT security defenses. BenchIoT introduced a set of
evaluation metrics designed specifically for Internet of Things (IoT)
devices. These metrics include security, performance, and memory

Defense/
Metric

Reported
Overhead

Overhead
Type

Tool
Used

ECFI [2] 1.5% CPU perf [22]
D-Box [41] 2.0% CPU DWT [11]

Ghostbuster [1] 1% CPU PMU Driver [10]
Shade [62] 2% CPU N/S
C2 [40] 3.6% Scan Cycle N/S

SnapShotter [30] 54 µs Scan Cycle N/S
ICSPatch [47] 17.4 µs Scan Cycle N/S
Smart I/O [44] 200 ms CPU N/S

Zeus [28] 0% N/S N/S

Table 1: Comparison of PLC security defenses that explain
how overhead evaluation was performed. N/S = Not Specified.

and energy metrics [6]. IoT devices share many characteristics with
PLCs. For example, they use RTOS to meet strict timing require-
ments, and they use processors similar to ARM’s Cortex-M series.
However, there important differences, IoT devices, as their name
implies, rely heavily on network communication while PLCs do
not necessarily need network communication to accomplish their
task. Another important difference is that IoT devices do not use
control logic, which is an essential characteristic of PLCs. These
differences highlight the importance of designing evaluation met-
rics specific to PLCs as not all metrics proposed in BenchIoT are
directly transferable to PLCs.

Metrics by Lopez-Morales et al. In their PLC-focused Sys-
tematization of Knowledge (SoK) work, Lopez-Morales et al. [39]
introduced some evaluation metrics to compare PLC security de-
fenses. These metrics include PLC overhead and defense effective-
ness, among others. However, these metrics are limited as they are
not specific enough to make a quantitative comparison between
PLC defenses. For example, the PLC overhead metric categorizes
each defense with either zero, negligible, or considerable overhead.
However, these metrics do not consider anything specific about
CPU, scan cycle, or memory overhead. They also introduced the
effectiveness category which includes metrics such as accuracy and
false positives. However, such a metric is not reported by any of
the defenses that were explored as a part of their SoK work.

2.5 Profiling and Benchmarking
In order to obtain any evaluation metrics there are two main meth-
ods: profiling and benchmarking.

Profiling providesmeasurements for the performance of software
applications. Profiling provides fine-grained information for the
components of an application, such as how often a function is
called, how long a routine takes to execute, and how much time is
spent on different parts of the code. With this information, we can
identify performance bottlenecks and poorly implemented code
that can later be improved [18]. Profiling can be implemented via
instrumentation. Instrumentation refers to inserting special code
at the beginning and end of a routine to record when the routine
starts and ends. The profiling result shows the actual time taken by
the routine on each call. If the application’s source code is available,



RICSS ’24, October 14–18, 2024, Salt Lake City, UT, USA Efrén López-Morales, Jacob Hopkins, Alvaro A. Cardenas, Ali Abbasi, and Carlos Rubio-Medrano

profiling is accomplished by inserting the instrumentation code in
the source code itself. However, if the source code is unavailable, the
instrumentation code is inserted into the application’s executable
code once it is in memory [2, 18].

Benchmarking is a critical aspect of evaluating computer hard-
ware and software. Benchmarking is a process that compares the
performance of various alternative tools and technologies through
a standard test (or series of standard tests) [54]. A benchmark com-
prises three components: a motivating comparison, a task sample,
and performancemeasures [54]. Themotivating comparison defines
both the reason for the benchmark and the comparison to be used to
judge the technologies’ performances. The task sample represents
the sampling of tasks the subject is expected to solve. Lastly, the
performance measures lay out the measurements needed to record
the subject’s fitness to perform the specified tasks. Often, when a
community develops a benchmark for their domain, it encourages
the maturation of that domain because a benchmark represents an
operationalization of the domain’s scientific paradigms [54].

3 Design Objectives
To effectively address the research questions described in Sec. 1,
we designed our evaluation metrics with the following objectives
in mind.

3.1 Applicable to Multiple PLC Architectures
Our metrics must be compatible with the multiple architectures
that PLCs have, as discussed in Sec. 2.2 so that they can be used to
compare the widest array of PLC defenses possible. Specifically, we
designed our metrics to work for both Hard and SoftPLCs.

3.2 Applicable to All PLC Security Defenses
Our performance metrics must be as general as possible so that we
can compare as many defenses as possible. As we discussed in Sec.
2.3, PLC defenses include a wide range of methods that include IDS
and CFI. Designing our metrics to be specific to either one of these
would not allow for a direct comparison. The current literature has
no basis for this type of comparison between PLC defenses, so we
want to create that basis.

3.3 Simple and Straightforward
The evaluation metrics that we propose are the ones we believe
are fundamental for evaluation and comparison with other PLC
defenses. We do not aim to provide an exhaustive set of evaluation
metrics for two main reasons. First, if we introduce very specific
metrics, this will make our metrics non-general as some PLCs or
PLC defenses will not qualify for some specific metrics. The second
reason is that introducing too many evaluation metrics creates an
additional burden for researchers to conduct several new evaluation
experiments. This is not always feasible as researchers might have
time or bandwidth constraints. If the metrics are too burdensome
to obtain, researchers might just skip them, defeating the purpose
of this work.

3.4 Focused on Defenses
Finally, our metrics must focus on the evaluation of defensive PLC
security methods. An example of a PLC security defense would be

Ghostbuster [1]. Ghostbuster is a countermeasure designed to detect
PIN control attacks [1]. In this case, our evaluation metrics would
apply to Ghostbuster but not PIN control attacks. Additionally, our
evaluation metrics are not designed to evaluate the security of con-
trol logic programs. Although control logic programs are sometimes
part of a defense and can be included in the evaluation process,
our proposed metrics are designed for the defense methods, not
the control logic. The evaluation metrics proposed in this work are
meant for all programmable logic controllers, including HardPLCs
and SoftPLCs. Finally, our evaluation metrics are not designed for
IEDs, RTUs, or other CPS devices.

4 Evaluation Metrics
Based on the above research questions and design considerations,
we now propose three types of evaluation metrics for PLC defenses:
security metrics, overhead metrics, and effectiveness metrics.

4.1 Security Metrics
Security metrics quantify if the defense follows the least-privilege
principle. They quantify how the defense method affects the secu-
rity of the system.
(1) Number of ROP Gadgets. Return-Oriented Programming

(ROP) is an exploit technique that allows an attacker to gain
control of the call stack to hijack the program control flow
and execute instruction sequences that are already in memory;
these instructions are called ROP gadgets. [16]. PLCs are also
vulnerable to this type of attack [13]; however, not all control
logic compilers generate new ROP gadgets. As we discussed in
Sec. 2.2, control logic code can be compiled into machine code
or translated via just-in-time compilation. Only control logic
compiled into machine code might introduce new ROP gadgets.
An example of this metric being used in practice is D-Box [41].
This approach was designed to provide secure DMA operations
to compartmentalize MCU-based devices. D-Box used the ROP
gadget metric to compare Its performance to FreeRTOS-MPU
(F-MPU). D-Box had exposed 13 ROP gadgets in its standard
configuration, and F-MPU had exposed 520 ROP gadgets in its
standard configuration [41].

(2) Memory Region Ratio. This metric measures the efficacy of
memory isolation by computing the size ratio of the maximum
available code region to an adversary with respect to the total
code size of the application binary. A lower value is better [6].
To calculate the Memory Region Ratio (MRR) we can follow
Equation 1. The maximum available code region size can be
obtained by analyzing the PLC defense binary and identifying
all the executable code regions. The application binary code size
can be obtained by parsing the application itself. Once again,
D-Box is an example of the memory region ration metric in
practice [41]. The authors evaluated D-box using this metric
and demonstrated that D-Box reduced the memory region ratio
in various sub-regions, i.e., user space flash.

𝑀𝑅𝑅 =
𝑀𝑎𝑥𝑖𝑚𝑢𝑚𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝐶𝑜𝑑𝑒𝑅𝑒𝑔𝑖𝑜𝑛𝑆𝑖𝑧𝑒

𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐵𝑖𝑛𝑎𝑟𝑦𝐶𝑜𝑑𝑒𝑆𝑖𝑧𝑒
(1)

(3) Number of Privileged Cycles. Privileged cycles may occur
during user threads with elevated privileges or I/O operations.



By the Numbers: Towards Standard Evaluation Metrics for Programmable Logic Controllers’ Defenses RICSS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Reducing the number of privileged cycles improves the security
of the PLC; thus, PLC defense methods should avoid introduc-
ing additional privilege cycles [6]. To our knowledge, no PLC
defenses have been evaluated using this metric. This would be
a new metric within the PLC security domain.

4.2 Overhead Metrics
Overhead metrics quantify the additional or indirect resources the
defense requires to function.
(1) Scan Cycle Time. This metric measures the time the PLC takes

to complete its scan cycle while running the defense. The scan
cycle time should be reported in microseconds (𝜇s). An example
of this metric in use can be observed in the evaluation of C2 [40].
The scan cycle time metric was to determine the performance
cost increase that would incur on a PLC from C2 mediating
access to physical assets, e.g., assembly line. This portion of
the evaluation was completed on a Raspberry Pi with a 700
MHz processor, and the evaluation demonstrated an increase
of between 0.1 to 0.2 ms of scan cycle time [40].

(2) Total Runtime Cycles. The total runtime, or wall time, mea-
sures the total runtime of running the PLC defense application.
The total runtime may include active CPU cycles, waiting for
I/O, waiting for the network, etc. The total runtime cycles should
be reported in milliseconds (ms). An example of this metric in
practice occurred with ICSPatch [47]. During the evaluation
of ICSPatch, 24 vulnerable binaries were analyzed to identify
the vulnerability and patch said vulnerability. The runtime cy-
cles (milliseconds) for each process phase, in which vulnerabil-
ity localization, patch generation, and patch verification were
recorded and reported.

(3) Total CPU Cycles. This metric measures only the time the
CPU is actively working on the PLC defense application. Unlike
the total runtime cycles metric, this metric does not include
other factors, such as waiting for I/O or the network. The total
CPU cycles should be reported in milliseconds (ms). A related
example of this metric in practice comes from ECFI [2]. The
authors of this work reported the CPU cycles used by their tool
in terms of worst-case and average-case scenarios.

(4) Total RAM Usage. This metric measures the memory (RAM)
the defense application utilizes during its execution. This in-
cludes all the memory the application allocates for its various
components and processes, such as code, data, stack, heap, and
any dynamically allocatedmemory. For example, Linuxmemory
management refers to this metric as resident set size (RSS) [61].
The total RAM usage should be reported in kilobytes (KiB).
A related example to this metric in use comes from ICSPatch
[47]. The authors only recorded the additional memory (Bytes)
required for the generated patches. They did not record the
total amount of memory used during the execution of the en-
tire patching process. To abide by this proposed metric, future
research would need to record the entire memory used by the
proposed defense and not just from its generated output.

4.3 Effectiveness Metrics
Effectiveness metrics quantify how well the defense performs its
task, e.g., anomaly detection. The effectiveness metrics we propose

are straightforward and are based on the confusion matrix used in
the field of Machine Learning [36].

(1) True Positive. This is the occurrence of a positive sample that
has been correctly identified as being positive.

(2) True Negative. This is the occurrence of a negative sample
that has been correctly identified as being negative.

(3) False Positive. This is the occurrence of a negative sample
incorrectly identified as a positive sample. This is commonly
referred to as being a Type 1 error.

(4) False Negative. This is the occurrence of a positive sample
that has been incorrectly identified as being a negative sample.
This is commonly referred to as being a Type 2 error.

(5) Accuracy. This is the total number of correctly identified posi-
tive and negative samples averaged over the total number of
samples.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 +𝑇𝑁

𝑇𝑃 +𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 (2)

These metrics are commonly used for classification tasks, e.g.,
anomaly detection and malware classification. For example, Salehi
and Bayat-Sarmadi proposed PLCDefender that combined remote
attestation with a physics-based simulation to determine if the
target PLC was operating correctly [50]. Part of their method was
detecting if the PLC’s behavior was operating maliciously or within
operating norms. PLCDefender used all five of the above metrics
to measure the effectiveness of their solution. If any PLC defense is
designed to detect and identify an attack, then that PLC defense’s
effectiveness can be measured using these metrics.

However, if a PLC defense is not designed to incorporate clas-
sification abilities, these metrics may not be applicable. Further,
metrics needed to be proposed that can measure the effectiveness
of non-classification-based PLC defenses such as AttkFinder [17].

4.4 Case Study: Security Metrics for ICSPatch
ICSPatch is a PLC security defense that automatically locates con-
trol logic vulnerabilities and non-intrusively hot-patches vulnera-
bilities in the control application directly in the main memory of the
PLC without stopping its operation [47]. This case study explains
how our security metrics can be applied to ICSPatch. We selected
ICSPatch because it is one of the most recent PLC defenses.

Security Metrics. ICSPatch does not report security metrics,
allowing us to explore how they could be obtained.

Number of ROP Gadgets: ICSPatch relies on a local patch server
running on the deployed PLC. The local patch server is written in
C code, and the compiled binary file could introduce exploitable
ROP gadgets, which can be quantified using our proposed metric.

Memory Region Ratio: ICSPatch increases the binary memory
utilization by introducing the local patch server. This may add to
the memory available code region for adversaries, increasing the
attack surface of the PLC. To quantify this increase, the local patch
server binary code size must be measured to calculate the MMR
described in Equation 1.

Number of Privileged Cycles: ICSPatch reports the number of
CPU cycles. However, there is no distinction between privileged
and userspace cycles. To obtain our proposed metric, the number
of privileged cycles, the authors of ICSPatch would have to modify



RICSS ’24, October 14–18, 2024, Salt Lake City, UT, USA Efrén López-Morales, Jacob Hopkins, Alvaro A. Cardenas, Ali Abbasi, and Carlos Rubio-Medrano

Table 2: Summary of processor cores used by the top 10 most
studied PLCs in security literature.

Manufacturer PLC Model Processor Core

Siemens S7-300 Unknown
Siemens S-1200 ARM Cortex-R4 [3]

Schneider Electric Modicon M221 Unknown
Siemens S7-1500 Unknown
Rockwell MicroLogix 1400 Unknown
Rockwell ControlLogix 5571 Unknown
Rockwell MicroLogix 1100 Unknown
Wago PFC200 ARM Cortex A8 [60]
Wago 750-881 Unknown

their benchmarking tool to report privileged cycles only in addition
to the total CPU cycles.

5 Challenges Obtaining Evaluation Metrics
In this section, we describe some of the most critical challenges
researchers encounter when measuring evaluation metrics.

5.1 Lack of Standard Benchmarking and
Profiling Tools

As we discussed in Sec. 2.5, in order to obtain metrics, we need to
use profiling or benchmarking. However, these tools are sometimes
not readily available to perform measurements, and even if some of
them are available, they might not be compatible with all types of
PLC. For example, ARM’s PMU is exclusively available for ARM pro-
cessors as depicted in Table 1. This means other architectures, such
as x86, will not have access to this benchmarking feature. Another
consequence of the lack of standard benchmarking and profiling
tools is that if there is no tool to measure a specific metric for a
specific PLC, then researchers have to implement their own pro-
filers via instrumentation and maybe even their own benchmarks.
Finally, even if there are some tools available, researchers might not
be aware of them. Table 1 includes the tool used for metric measures
for several PLC defenses. As we can see, only three papers reported
what tool was used to obtain their reported overhead values.

5.2 Proprietary PLC Hardware and Software
As we discussed in Sec. 2.1 and 2.2, some PLCs have proprietary
hardware and software that makes metric measurement difficult.
For example, we do not know the CPU core for many PLCs. Table
2 depicts the top 10 most common PLCs in the security literature;
however, we only know the type of processor of two of them. This
lack of information hinders our ability to connect metrics because
we do not know the architecture of the processor or the OS. Thus,
we do not knowwhat type of profiling or benchmarking tools might
be compatible with a particular PLC. This problem is not limited
to HardPLCs. CODESYS, one of the main SoftPLC platforms, has a
proprietary runtime environment that can make profiling difficult.
Specifically, researchers might need to reverse-engineer parts of

the CODESYS runtime to insert instrumentation code to implement
a profiler, as discussed in Sec. 2.5.

5.3 Different Environment Conditions During
Metric Measurement

When we measure any metric via profiling or benchmarking, the
resulting measuring is affected by multiple secondary environment
conditions and configurations. These conditions include but are
not limited to network latency, CPU sleep cycles, multi-threading,
and hardware security features such as Address Space Layout Ran-
domization (ASLR) [2, 4]. These conditions directly affect metric
measurements by introducing delays and overhead. For example, if
we consider the total runtime cycles metric (Sec. 4, the total runtime
might be increased by CPU sleep cycles or the overhead introduced
by ASLR. However, if ASLR is unavailable or disabled, then the
total runtime cycles metric would be different. The end result is
that different measurements of the same metric can result in sig-
nificantly different measurements if the underlying environmental
conditions are different.

6 Recommendations
In this section, we provide a set of recommendations aimed at
addressing the challenges discussed in Sec. 5.

6.1 Use a Benchmark Control Logic Algorithm
Using a single control logic program or algorithm as a benchmark
to test the performance metrics would enable the metrics to remain
comparable across multiple defenses. For example, Abbasi et al. [2]
introduced the control logic depicted in Algorithm 1 that uses all the
PLC analog and digital I/O interfaces and performs basic arithmetic
operations.

This concept is similar to the use of The Tennessee Eastman
Process (TEP) [23]. The TEP is a real industrial process that was
modeled in 1993. The TEP has been adopted as a benchmark to
test security attack and defense methods [35]. However, the TEP
cannot be used as a benchmark for PLC defenses because it does
not specify a control logic algorithm.

6.2 Leverage Existing Benchmarking and
Profiling Tools

Researchers who want to obtain our proposed metrics should not
reinvent the wheel, instead they should make use of existing profil-
ing and benchmarking tools whenever possible. The following are
some of the available tools for both Hard and SoftPLCs.

SIMATIC Controller Profiling. The SIMATIC Controller Pro-
filing is an analysis tool that analyzes and evaluates the runtime
behavior of the control logic program on a SIMATIC controller
which is displayed on a web interface [53]. The SIMACTIC Con-
troller Profiling tool is available for the SIMATIC S7-1500 only. This
profiling tool provides the wall time of “OB1 block” which provides
the PLC scan cycle metric [52].

CODESYS Profiler. The CODESYS profiler is a tool that enables
the detailed measurement of runtime behavior and code coverage
of the control logic program [19]. It provides multiple data and
measurements, for example, it provides the minimum andminimum



By the Numbers: Towards Standard Evaluation Metrics for Programmable Logic Controllers’ Defenses RICSS ’24, October 14–18, 2024, Salt Lake City, UT, USA

processing time over multiple cycles, which can be used to obtain
the scan cycle metric [64]. The CODESYS profiler tool is available
for any CODESYS-compatible platform.

OpenPLC’s Cycle Time Logs. The OpenPLC runtime logs the
real time cycle time (scan cycle time) and latency, the maximum,
minimum, and average values in microseconds are printed out in
the summary logs when the control logic program stops. These
values are also available in the OpenPLC web interface [8].

ARM’s Performance Monitor Unit (PMU). ARM processors
provide a Performance Monitoring Unit (PMU) as part of their
architecture to gather statistics on the operation of the processor
and memory system [10]. The PMU can track events on the core
via counters such as the Cycle Count Register counter which is one
of our overhead metrics (Sec. 4).

ROPgadget Tool. The ROPgadget tool analyzes application
binaries and searches for ROP gadgets. It supports multiple archi-
tectures, including x86 and ARM [51], which some PLCs support
as shown in Table 2.

UNIX Tools. UNIX-based operating systems such as Linux and
RTOS provide profiling and benchmarking tools that can be lever-
aged to obtain PLC defense metrics. These tools are relevant since
many PLCs implement UNIX-based operating systems [3]. These
tools include the time command [38], the readelf command [33],
the perf command [32] and the top command [34].

The time command measures an application’s total time, which,
in this case, is a PLC defense [38]. It provides values such as wall
clock time, the same as our total runtime cycles metric (Sec. 4).

The readelf command [33] allows us to analyze an application
binary to identify the executable memory regions. This command
is useful when obtaining the memory region ratio metric (Sec. 4).

The perf command [32] is a versatile profiling and benchmarking
tool that provides performance CPU counters and more. These
counters allow us to obtain the total CPU cycles metric (Sec. 4).

The top command [34] is a common Linux utility that monitors
the system activity, including the amount of physical RAM a par-
ticular process uses, measured in kilobytes. This is relevant to the
total RAM usage metric (Sec. 4).

6.3 Normalize Environment Configuration
In order to tackle the different environment conditions challenge
discussed in Sec. 5, researchers should understand the relevant envi-
ronment configurations and normalize them before collecting met-
rics. Specifically, multiple evaluation metrics should be measured
under the same environment configuration whenever possible. This
is particularly important if multiple PLCs are being evaluated. For
example, CODESYS allows users to use one or multiple cores to run
control logic [20]. Additionally, researchers should document and
share the environmental conditions and configuration when met-
rics were collected. Sharing these data will allow other researchers
to normalize their own environmental conditions so that their met-
rics are compared optimally. It is worth pointing out that, without
proper research artifacts, it is not feasible to reproduce the same ex-
act environment when trying to replicate the metrics of a previous
PLC defense.

6.4 Use Worst-Case Execution Time (WCET) for
Measuring Overhead Metrics

Worst-Case Execution Time (WCET) is the maximum time a task
can take to execute on a specific hardware platform. WCET should
be used to verify real-time systems, such as PLCs, where a missed
deadline is unacceptable, as this might result in irreparable damage
to physical assets and even humans. WCET estimates can be used
to verify that the response time of a critical piece of code is short
enough, that interrupt handlers finish quickly enough, or that the
sample rate of a control loop can be kept [24, 46]. When measuring
the metrics we proposed in Sec. 4, researchers should obtain and
report WCET for the aforementioned reasons and should not rely
on average performance values as these average values are not
realistic in the PLC setting where strict real-time performance is
necessary [2, 4].

7 Conclusion
In this paper, we propose a set of evaluationmetrics for PLC security
defenses. Our metrics include security, overhead, and effectiveness
metrics specifically tailored to PLCs. We also pointed out poten-
tial challenges that researchers might encounter when measuring
our proposed metrics and we provide recommendations on how to
overcome these challenges. We hope that this work will encourage
researchers to report evaluation metrics when publishing new PLC
security defenses in addition to providing research artifacts, allow-
ing for PLC research to move towards security by design and not
in an ad-hoc manner.

In future work, we plan to leverage the evaluation metrics we
have proposed to develop a PLC defense benchmark framework
that can automate the whole performance evaluation process. To
this end, additional factors need to be considered. For example, how
can the evaluation metrics be measured and automated? Howmany
benchmark applications will such a framework include, and what
will it include?What are the supported PLCmodels and processors?
Correctly answering these questions will be crucial for evaluating
the effectiveness of security defenses for PLCs in the future.

Acknowledgments
This work was partially supported by the US Department of Trans-
portation (USDOT) Tier-1 University Transportation Center (UTC)
Transportation Cybersecurity Center for Advanced Research and
Education (CYBER-CARE). (Grant No. 69A3552348332), and by the
Scholar Achievement in Graduate Education (SAGE) Fellowship
from Texas A&M University-Corpus Christi.

References
[1] Ali Abbasi and Andrea Genuise. 2017. Ghost in the PLC vs GhostBuster: on the

feasibility of detecting pin control attack in Programmable Logic Controllers. In
Ghost in the PLC vs GhostBuster. Eindhoven University of Technology.

[2] Ali Abbasi, Thorsten Holz, Emmanuele Zambon, and Sandro Etalle. 2017. ECFI:
Asynchronous Control Flow Integrity for Programmable Logic Controllers. In
Proceedings of the 33rd Annual Computer Security Applications Conference (Or-
lando, FL, USA) (ACSAC ’17). Association for Computing Machinery, New York,
NY, USA, 437–448. https://doi.org/10.1145/3134600.3134618

[3] Ali Abbasi, Tobias Scharnowski, and Thorsten Holz. 2019. Doors of durin: The
veiled gate to siemens S7 silicon. BlackHat Europe (2019).

[4] Ali Abbasi, Jos Wetzels, Thorsten Holz, and Sandro Etalle. 2019. Challenges
in designing exploit mitigations for deeply embedded systems. In 2019 IEEE
European Symposium on Security and Privacy (EuroS&P). IEEE, 31–46.

https://doi.org/10.1145/3134600.3134618


RICSS ’24, October 14–18, 2024, Salt Lake City, UT, USA Efrén López-Morales, Jacob Hopkins, Alvaro A. Cardenas, Ali Abbasi, and Carlos Rubio-Medrano

[5] Chuadhry Mujeeb Ahmed, Martin Ochoa, Jianying Zhou, and Aditya Mathur.
2021. Scanning the cycle: Timing-based authentication on PLCs. In Proceedings
of the 2021 ACM Asia Conference on Computer and Communications Security.
886–900.

[6] Naif Saleh Almakhdhub, Abraham A Clements, Mathias Payer, and Saurabh
Bagchi. 2019. Benchiot: A security benchmark for the internet of things. In
2019 49th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN). IEEE, 234–246.

[7] Thiago Alves. 2022. OpenPLC Runtime version 3. https://github.com/
thiagoralves/OpenPLC_v3 Accessed: 27-09-2023.

[8] Thiago Alves. 2023. webserver/core/main.cpp: Get REAL-TIME time values.
https://github.com/thiagoralves/OpenPLC_v3/pull/201

[9] arm. 2024. Cortex-R5. https://www.arm.com/products/silicon-ip-cpu/cortex-
r/cortex-r5

[10] ARM Developer. 2024. About the PMU. https://developer.arm.com/
documentation/ddi0488/h/performance-monitor-unit/about-the-pmu

[11] ARM Developer. 2024. DWT functional description. https:
//developer.arm.com/documentation/ddi0337/h/data-watchpoint-and-trace-
unit/dwt-functional-description

[12] John Aycock. 2003. A brief history of just-in-time. ACM Computing Surveys
(CSUR) 35, 2 (2003), 97–113.

[13] Adeen Ayub, Nauman Zubair, Hyunguk Yoo, Wooyeon Jo, and Irfan Ahmed. 2023.
Gadgets of gadgets in industrial control systems: Return oriented programming
attacks on PLCs. In 2023 IEEE International Symposium on Hardware Oriented
Security and Trust (HOST). IEEE, 215–226.

[14] Zachry Basnight, Jonathan Butts, Juan Lopez Jr, and Thomas Dube. 2013.
Firmware modification attacks on programmable logic controllers. International
Journal of Critical Infrastructure Protection 6, 2 (2013), 76–84.

[15] William Bolton. 2015. Programmable logic controllers. Newnes.
[16] Erik Buchanan, Ryan Roemer, Stefan Savage, and Hovav Shacham. 2008. Return-

oriented programming: Exploitation without code injection. Black Hat 8 (2008).
[17] John H. Castellanos, Martin Ochoa, Alvaro A. Cardenas, Owen Arden, and Jiany-

ing ZHOU. 2021. AttkFinder: Discovering Attack Vectors in PLC Programs
using Information Flow Analysis. In Proceedings of the 24th International Sym-
posium on Research in Attacks, Intrusions and Defenses (San Sebastian, Spain)
(RAID ’21). Association for Computing Machinery, New York, NY, USA, 235–250.
https://doi.org/10.1145/3471621.3471864

[18] Euccas Chen. 2017. CPU Profiling Tools on Linux. https://euccas.github.io/blog/
20170827/cpu-profiling-tools-on-linux.html

[19] CODESYS GmbH. 2022. CODESYS Profiler | CODESYS Store International. https:
//store.codesys.com/en/codesys-profiler.html

[20] CODESYS GmbH. 2024. Multicore. https://help.codesys.com/api-content/2/
codesys/3.5.13.0/en/_cds_multi_core/

[21] CODESYS Runtime [n. d.]. CODESYS Runtime. https://www.codesys.com/
products/codesys-runtime.html. Accessed: 09-08-2024.

[22] Arnaldo Carvalho De Melo. 2010. The new linux’perf’tools. In Slides from Linux
Kongress, Vol. 18. 1–42.

[23] James J Downs and Ernest F Vogel. 1993. A plant-wide industrial process control
problem. Computers & chemical engineering 17, 3 (1993), 245–255.

[24] Jakob Engblom, Andreas Ermedahl, Mikael Sjödin, Jan Gustafsson, and Hans
Hansson. 2003. Worst-case execution-time analysis for embedded real-time
systems. International Journal on Software Tools for Technology Transfer 4 (2003),
437–455.

[25] Nicolas Falliere, Liam O Murchu, Eric Chien, et al. 2011. W32. stuxnet dossier.
White paper, symantec corp., security response 5, 6 (2011), 29.

[26] David Formby and Raheem Beyah. 2019. Temporal execution behavior for host
anomaly detection in programmable logic controllers. IEEE Transactions on
Information Forensics and Security 15 (2019), 1455–1469.

[27] Dina Hadžiosmanović, Robin Sommer, Emmanuele Zambon, and Pieter H Hartel.
2014. Through the eye of the PLC: semantic security monitoring for indus-
trial processes. In Proceedings of the 30th Annual Computer Security Applications
Conference. 126–135.

[28] Yi Han, Sriharsha Etigowni, Hua Liu, Saman Zonouz, and Athina Petropulu.
2017. Watch me, but don’t touch me! contactless control flow monitoring via
electromagnetic emanations. In Proceedings of the 2017 ACM SIGSAC conference
on computer and communications security. 1095–1108.

[29] Instrumentation Tools. 2024. Understanding the Scan Cycle of SIEMENS
PLC. https://instrumentationtools.com/understanding-the-scan-cycle-of-
siemens-plc/#what-is-meant-by-a-scan-cycle

[30] Chenglu Jin, Saeed Valizadeh, and Marten van Dijk. 2018. Snapshotter: Light-
weight intrusion detection and prevention system for industrial control systems.
In 2018 IEEE Industrial Cyber-Physical Systems (ICPS). IEEE 45 (2018), 824–829.

[31] Anastasis Keliris and Michail Maniatakos. 2018. ICSREF: A framework for auto-
mated reverse engineering of industrial control systems binaries. arXiv preprint
arXiv:1812.03478 (2018).

[32] Michael Kerrisk. 2024. perf(1) — Linuxmanual page. https://man7.org/linux/man-
pages/man1/perf.1.html

[33] Michael Kerrisk. 2024. readelf(1) — Linux manual page. https://man7.org/linux/
man-pages/man1/readelf.1.html

[34] Michael Kerrisk. 2024. top(1) — Linux manual page. https://man7.org/linux/man-
pages/man1/top.1.html

[35] Marina Krotofil and Alvaro A Cárdenas. 2013. Resilience of process control
systems to cyber-physical attacks. In Secure IT Systems: 18th Nordic Conference,
NordSec 2013, Ilulissat, Greenland, October 18-21, 2013, Proceedings 18. Springer,
166–182.

[36] Joffrey L Leevy, John Hancock, Richard Zuech, and Taghi M Khoshgoftaar. 2021.
Detecting cybersecurity attacks across different network features and learners.
Journal of Big Data 8 (2021), 1–29.

[37] Efrén López-Morales, Carlos Rubio-Medrano, Adam Doupé, Yan Shoshitaishvili,
Ruoyu Wang, Tiffany Bao, and Gail-Joon Ahn. 2020. HoneyPLC: A Next-
Generation Honeypot for Industrial Control Systems. In Proceedings of the 2020
ACM SIGSAC Conference on Computer and Communications Security (Virtual
Event, USA) (CCS ’20). Association for Computing Machinery, Virtual Event,
USA, 279–291. https://doi.org/10.1145/3372297.3423356

[38] Adam L. Lyon. 2017. Time profiling. https://lyon-fnal.github.io/profiling-
book/time-command.html

[39] Efrén López-Morales, Ulysse Planta, Carlos Rubio-Medrano, Ali Abbasi, and
Alvaro A. Cardenas. 2024. SoK: Security of Programmable Logic Controllers.
arXiv:2403.00280 [cs.CR] https://arxiv.org/abs/2403.00280

[40] Stephen McLaughlin. 2013. CPS: Stateful policy enforcement for control system
device usage. In Proceedings of the 29th Annual Computer Security Applications
Conference. 109–118.

[41] Alejandro Mera, Yi Hui Chen, Ruimin Sun, Engin Kirda, and Long Lu. 2022.
D-box: DMA-enabled compartmentalization for embedded applications. arXiv
preprint arXiv:2201.05199 (2022).

[42] Open Source PLC Software. 2024. 1.3 Installing OpenPLC Runtime on Windows.
https://autonomylogic.com/docs/installing-openplc-runtime-on-windows/

[43] OpenPLC Overview – OpenPLC [n. d.]. 1.1 OpenPLC Overview – OpenPLC.
https://openplcproject.com/docs/openplc-overview/. Accessed: 09-08-2024.

[44] Hammond Pearce, Srinivas Pinisetty, Partha S Roop, Matthew MY Kuo, and
Abhisek Ukil. 2019. Smart I/O modules for mitigating cyber-physical attacks
on industrial control systems. IEEE Transactions on Industrial Informatics 16, 7
(2019), 4659–4669.

[45] R PICKREN, T SHEKARI, S ZONOUZ, and R BEYAH. 2024. Compromising
industrial processes using web-based programmable logic controller malware. In
Network and Distributed System Security Symposium (NDSS).

[46] Peter Puschner and Ch Koza. 1989. Calculating the maximum execution time of
real-time programs. Real-time systems 1, 2 (1989), 159–176.

[47] Prashant Hari Narayan Rajput, Constantine Doumanidis, andMichail Maniatakos.
2023. {ICSPatch}: Automated Vulnerability Localization and {Non-Intrusive}
Hotpatching in Industrial Control Systems using Data Dependence Graphs. In
32nd USENIX Security Symposium (USENIX Security 23). 6861–6876.

[48] Luis Salazar, Sebastián R. Castro, Juan Lozano, Keerthi Koneru, Emmanuele
Zambon, Bing Huang, Ross Baldick, Marina Krotofil, Alonso Rojas, and Alvaro A.
Cardenas. 2024. A Tale of Two Industroyers: It was the Season of Darkness. In
2024 IEEE Symposium on Security and Privacy (SP). 312–330. https://doi.org/10.
1109/SP54263.2024.00162

[49] Luis Salazar, Efren López-Morales, Juan Lozano, Carlos Rubio-Medrano, and
Alvaro A Cardenas. 2024. ICSNet: A Hybrid-Interaction Honeynet for Industrial
Control Systems. In Proceedings of the 6th Workshop on CPS&IoT Security and
Privacy (Salt Lake City, UT, USA) (CPSIoTSec ’24). Association for Computing
Machinery, New York, NY, USA.

[50] Mohsen Salehi and Siavash Bayat-Sarmadi. 2021. PLCDefender: Improving
Remote Attestation Techniques for PLCs Using Physical Model. IEEE Internet of
Things Journal 8, 9 (2021), 7372–7379. https://doi.org/10.1109/JIOT.2020.3040237

[51] Jonathan Salwan. 2023. ROPgadget Tool. hhttps://github.com/JonathanSalwan/
ROPgadget

[52] Siemens. 2021. OB1 Scan Cycle Time. https://support.industry.siemens.com/
forum/WW/en/posts/ob1-scan-cycle-time/253590

[53] Siemens. 2024. SIMATIC Controller Profiling. https://cache.industry.siemens.
com/dl/files/245/109750245/att_1165728/v2/109750245_S71500ProfilingTool_
DOC_V10_en.pdf

[54] S.E. Sim, S. Easterbrook, and R.C. Holt. 2003. Using benchmarking to advance
research: a challenge to software engineering. In 25th International Conference
on Software Engineering, 2003. Proceedings. 74–83. https://doi.org/10.1109/ICSE.
2003.1201189

[55] John A Stankovic and Raj Rajkumar. 2004. Real-time operating systems. Real-Time
Systems 28, 2-3 (2004), 237–253.

[56] Ruimin Sun, Alejandro Mera, Long Lu, and David Choffnes. 2021. SoK: Attacks
on Industrial Control Logic and Formal Verification-Based Defenses. In 2021 IEEE
European Symposium on Security and Privacy (EuroS&P). IEEE, 385–402.

[57] The Memory Protection Unit [n. d.]. The Memory Protection Unit. https:
//developer.arm.com/documentation/den0042/a/The-Memory-Protection-Unit.
Accessed: 09-08-2024.

https://github.com/thiagoralves/OpenPLC_v3
https://github.com/thiagoralves/OpenPLC_v3
https://github.com/thiagoralves/OpenPLC_v3/pull/201
https://www.arm.com/products/silicon-ip-cpu/cortex-r/cortex-r5
https://www.arm.com/products/silicon-ip-cpu/cortex-r/cortex-r5
https://developer.arm.com/documentation/ddi0488/h/performance-monitor-unit/about-the-pmu
https://developer.arm.com/documentation/ddi0488/h/performance-monitor-unit/about-the-pmu
https://developer.arm.com/documentation/ddi0337/h/data-watchpoint-and-trace-unit/dwt-functional-description
https://developer.arm.com/documentation/ddi0337/h/data-watchpoint-and-trace-unit/dwt-functional-description
https://developer.arm.com/documentation/ddi0337/h/data-watchpoint-and-trace-unit/dwt-functional-description
https://doi.org/10.1145/3471621.3471864
https://euccas.github.io/blog/20170827/cpu-profiling-tools-on-linux.html
https://euccas.github.io/blog/20170827/cpu-profiling-tools-on-linux.html
https://store.codesys.com/en/codesys-profiler.html
https://store.codesys.com/en/codesys-profiler.html
https://help.codesys.com/api-content/2/codesys/3.5.13.0/en/_cds_multi_core/
https://help.codesys.com/api-content/2/codesys/3.5.13.0/en/_cds_multi_core/
https://www.codesys.com/products/codesys-runtime.html
https://www.codesys.com/products/codesys-runtime.html
https://instrumentationtools.com/understanding-the-scan-cycle-of-siemens-plc/#what-is-meant-by-a-scan-cycle
https://instrumentationtools.com/understanding-the-scan-cycle-of-siemens-plc/#what-is-meant-by-a-scan-cycle
https://man7.org/linux/man-pages/man1/perf.1.html
https://man7.org/linux/man-pages/man1/perf.1.html
https://man7.org/linux/man-pages/man1/readelf.1.html
https://man7.org/linux/man-pages/man1/readelf.1.html
https://man7.org/linux/man-pages/man1/top.1.html
https://man7.org/linux/man-pages/man1/top.1.html
https://doi.org/10.1145/3372297.3423356
https://lyon-fnal.github.io/profiling-book/time-command.html
https://lyon-fnal.github.io/profiling-book/time-command.html
https://arxiv.org/abs/2403.00280
https://arxiv.org/abs/2403.00280
https://autonomylogic.com/docs/installing-openplc-runtime-on-windows/
https://openplcproject.com/docs/openplc-overview/
https://doi.org/10.1109/SP54263.2024.00162
https://doi.org/10.1109/SP54263.2024.00162
https://doi.org/10.1109/JIOT.2020.3040237
hhttps://github.com/JonathanSalwan/ROPgadget
hhttps://github.com/JonathanSalwan/ROPgadget
https://support.industry.siemens.com/forum/WW/en/posts/ob1-scan-cycle-time/253590
https://support.industry.siemens.com/forum/WW/en/posts/ob1-scan-cycle-time/253590
https://cache.industry.siemens.com/dl/files/245/109750245/att_1165728/v2/109750245_S71500ProfilingTool_DOC_V10_en.pdf
https://cache.industry.siemens.com/dl/files/245/109750245/att_1165728/v2/109750245_S71500ProfilingTool_DOC_V10_en.pdf
https://cache.industry.siemens.com/dl/files/245/109750245/att_1165728/v2/109750245_S71500ProfilingTool_DOC_V10_en.pdf
https://doi.org/10.1109/ICSE.2003.1201189
https://doi.org/10.1109/ICSE.2003.1201189
https://developer.arm.com/documentation/den0042/a/The-Memory-Protection-Unit
https://developer.arm.com/documentation/den0042/a/The-Memory-Protection-Unit


By the Numbers: Towards Standard Evaluation Metrics for Programmable Logic Controllers’ Defenses RICSS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Cyberspace

Runtime Environment
Operating System

Network Module
CPU

Memory

Control Logic
Physical space Physical space

Physical
Output

Firmware

Hardware

Physical
Input

Figure 2: Generic PLC Architecture. Based on [15, 26, 39].

Algorithm 1 Example control logic algorithm that performs tem-
perature Sensor Readings to servo motor PWM Control. Based on
[2].
1: Input: Read In.25 (Temperature Sensor Readings)
2: Output: Write Out.22 (ServoMotor PWM)
3: 𝑡 ← 0
4: while True do
5: read input
6: if input > 100 then
7: while input > 100 do
8: 𝐴, 𝐵,𝐶 ← Random Int ⊲ Set points
9: 𝐷 ← 𝐴 + 𝐵 +𝐶
10: Update Pulse Width Modulation I/O
11: PWM.IO(22) ← 1.5 + 0.5 · sin(𝑡)
12: 𝑡 ← 𝑡 + 𝐷
13: end while
14: else if input < 100 then
15: 𝐴← 0.1, 𝐵 ← 0.01, 𝐶 ← 0.001 ⊲ Set points
16: 𝐷 ← 𝐴 − 𝐵 −𝐶
17: Update Pulse Width Modulation I/O
18: PWM.IO(22) ← 0.7 + 0.2 · sin(𝑡)
19: 𝑡 ← 𝑡 + 𝐷
20: end if
21: end while

[58] Michael Tiegelkamp and Karl-Heinz John. 2010. IEC 61131-3: Programming
industrial automation systems. Springer.

[59] Vulnerability Disclosure Policy Template | CISA [n. d.]. Vulnerability Disclosure
Policy Template | CISA. https://www.cisa.gov/vulnerability-disclosure-policy-
template. Accessed: 09-08-2024.

[60] WAGO. 2024. Controller PFC200 (750-8217/600-000) | WAGO USA.
https://www.wago.com/us/controllers-bus-couplers-i-o/controller-
pfc200/p/750-8217_600-000

[61] WikiChip. 2020. Resident Set Size (RSS). https://en.wikichip.org/wiki/resident_
set_size#:~:text=The%20resident%20set%20size%20(RSS,is%20the%20virtual%
20set%20size.

[62] Hyunguk Yoo, Sushma Kalle, Jared Smith, and Irfan Ahmed. 2019. Overshadow
plc to detect remote control-logic injection attacks. In Detection of Intrusions
and Malware, and Vulnerability Assessment: 16th International Conference, DIMVA
2019, Gothenburg, Sweden, June 19–20, 2019, Proceedings 16. Springer, 109–132.

[63] Jonas Zaddach and Andrei Costin. 2013. Embedded devices se-
curity and firmware reverse engineering. Black Hat USA (2013).
https://media.blackhat.com/us-13/US-13-Zaddach-Workshop-on-Embedded-
Devices-Security-and-Firmware-Reverse-Engineering-Slides.pdf. Accessed:
03-10-2023.

[64] Gong Zhou. 2023. CODESYS Tutorial: Getting the Actual Cycle Time of a Current
Task. https://medium.com/@sean.gongz/how-to-get-current-task-actual-cycle-
time-in-codesys-267384bcd3b7

Appendix
Control Logic Algorithm
Algorithm 1 performs temperature sensor readings. This algorithm
is given as an example to establish a baseline or benchmark to
evaluate the evaluation metrics proposed in this paper.

PLC Architecture
The generic architecture of a PLC is depicted in Fig. 2.

https://www.cisa.gov/vulnerability-disclosure-policy-template
https://www.cisa.gov/vulnerability-disclosure-policy-template
https://www.wago.com/us/controllers-bus-couplers-i-o/controller-pfc200/p/750-8217_600-000
https://www.wago.com/us/controllers-bus-couplers-i-o/controller-pfc200/p/750-8217_600-000
https://en.wikichip.org/wiki/resident_set_size#:~:text=The%20resident%20set%20size%20(RSS,is%20the%20virtual%20set%20size.
https://en.wikichip.org/wiki/resident_set_size#:~:text=The%20resident%20set%20size%20(RSS,is%20the%20virtual%20set%20size.
https://en.wikichip.org/wiki/resident_set_size#:~:text=The%20resident%20set%20size%20(RSS,is%20the%20virtual%20set%20size.
https://media.blackhat.com/us-13/US-13-Zaddach-Workshop-on-Embedded-Devices-Security-and-Firmware-Reverse-Engineering-Slides.pdf
https://media.blackhat.com/us-13/US-13-Zaddach-Workshop-on-Embedded-Devices-Security-and-Firmware-Reverse-Engineering-Slides.pdf
https://medium.com/@sean.gongz/how-to-get-current-task-actual-cycle-time-in-codesys-267384bcd3b7
https://medium.com/@sean.gongz/how-to-get-current-task-actual-cycle-time-in-codesys-267384bcd3b7

	Abstract
	1 Introduction
	2 Background
	2.1 Programmable Logic Controllers
	2.2 PLC Architecture
	2.3 PLC Security Defenses
	2.4 Existing Evaluation Metrics
	2.5 Profiling and Benchmarking

	3 Design Objectives
	3.1 Applicable to Multiple PLC Architectures
	3.2 Applicable to All PLC Security Defenses
	3.3 Simple and Straightforward
	3.4 Focused on Defenses

	4 Evaluation Metrics
	4.1 Security Metrics
	4.2 Overhead Metrics
	4.3 Effectiveness Metrics
	4.4 Case Study: Security Metrics for ICSPatch

	5 Challenges Obtaining Evaluation Metrics
	5.1 Lack of Standard Benchmarking and Profiling Tools
	5.2 Proprietary PLC Hardware and Software
	5.3 Different Environment Conditions During Metric Measurement

	6 Recommendations
	6.1 Use a Benchmark Control Logic Algorithm
	6.2 Leverage Existing Benchmarking and Profiling Tools
	6.3 Normalize Environment Configuration
	6.4 Use Worst-Case Execution Time (WCET) for Measuring Overhead Metrics

	7 Conclusion
	Acknowledgments
	References

