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ABSTRACT

Industrial Control Systems (ICS) provide management and control
capabilities for mission-critical utilities such as the nuclear, power,
water, and transportation grids. Within ICS, Programmable Logic
Controllers (PLCs) play a key role as they serve as a convenient
bridge between the cyber and the physical worlds, e.g., controlling
centrifuge machines in nuclear power plants. The critical roles that
ICS and PLCs play have made them the target of sophisticated
cyberattacks that are designed to disrupt their operation, which
creates both social unrest and financial losses. In this context, hon-
eypots have been shown to be highly valuable tools for collecting
real data, e.g., malware payload, to better understand the many
different methods and strategies that attackers use.

However, existing state-of-the-art honeypots for PLCs lack so-
phisticated service simulations that are required to obtain valuable
data. Worse, they cannot adapt while ICS malware keeps evolving,
and attack patterns become more sophisticated. To overcome these
shortcomings, we present HoneyPLC, a high-interaction, extensible,
and malware-collecting honeypot supporting a broad spectrum of
PLCs models and vendors. Results from our experiments show that
HoneyPLC exhibits a high level of camouflaging: it is identified
as real devices by multiple widely used reconnaissance tools, in-
cluding Nmap, Shodan’s Honeyscore, the Siemens Step7 Manager,
PLCinject, and PLCScan, with a high level of confidence. We de-
ployed HoneyPLC on Amazon AWS and recorded a large amount
of interesting interactions over the Internet, showing not only that
attackers are in fact targeting ICS systems, but also that Honey-
PLC can effectively engage and deceive them while collecting data
samples for future analysis.
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1 INTRODUCTION

Industrial Control Systems (ICS) are widely used by many indus-
tries including public utilities such as the power grid, water, and
telecommunications [37]. These utilities are integral to people’s
daily life, and any interruption to them may cause significant dam-
age and losses. The increasingly interconnected nature of modern
ICS makes them more vulnerable than ever to cyberattacks. For
example, a cyberattack that targets a power grid would potentially
lead to blackouts in a city or across an entire geographical region.
Regrettably, this proposition is no longer a fiction. The number
of attacks targeting ICS has been steadily increasing since the
infamous Stuxnet malware first showed the world that ICS net-
works are not secure [13]. Also, in 2015, a cyberattack targeting
the Ukrainian power grid successfully took down several of its dis-
tribution stations. The ensuing outages left approximately 225,000
people without access to electricity for several hours [11].

One of the key components of ICS networks are Programmable
Logic Controllers, better known as PLCs [37]. They control mission-
critical electrical hardware such as pumps or centrifuges, effectively
serving as a bridge between the cyber and the physical worlds. Be-
cause of their critical role, PLCs have been recently targeted by
cyberattacks, which attempt to disrupt their proper functioning in
an effort to affect their corresponding ICS as a whole. As an exam-
ple, PLCs were the primary target of the Stuxnet malware as they
controlled critical physical processes in a nuclear facility. To better
understand cyberattacks against ICS and PLCs, several honeypots
have been proposed [3, 9, 14, 15, 21, 40]. However, current honeypot
implementations for ICS fail to provide the necessary features to
capture data for most recent and sophisticated attack techniques.
For example, a common limitation exhibited by most of the existing
approaches in the literature is their low-interaction nature: these
approaches usually rely on basic and shallow simulations of net-
work protocols, which usually lack complex functionality that limit
the attack vectors and makes them easy to discover by attackers.
These shortcomings heavily restrict the value of the attack data
that can be gathered by these ICS honeypots.

Providing a solution to these issues comes with a set of unique
challenges. First, it is difficult to achieve meaningful, step-by-step
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protocol simulation that can eventually result in high-level, deceiv-
ing interactions between honeypots and attackers. These inadequate
simulations complicate concealing the true nature of honeypots up
to the point accurate and valuable data, e.g., the actual malicious
ladder logic code itself can be retrieved from attackers for further
analysis. Second, several network protocols largely used in ICS,
e.g., S7comm [40], are proprietary, in the sense that no detailed
documentation on them is publicly available, which prevents an
effective understanding of the protocol, including hidden configu-
ration parameters as well as implicit, undocumented assumptions,
which can ultimately reveal the true nature of a honeypot to an
attacker. Moreover, existing PLCs used in practice vary in terms of
configuration settings, supported protocols, and the way they are
customized for different application domains. Creating a general
framework that can effectively support such heterogeneity of PLCs
devices, regardless of their manufacturing brand and model, with-
out requiring the edition of large and clumsy configuration files,
represents a non-trivial challenge.

To alleviate the aforementioned concerns targeting ICS world-
wide, and effectively tackle the research challenges just discussed,
this paper presents HoneyPLC: a high-interaction, extensible, and
malware-collecting honeypot modeling PLCs, which is specifically
crafted for ICS. HoneyPLC includes advanced simulations of the
most common network protocols found in PLCs, namely, the TCP/IP
Stack, S7comm, HTTP, and SNMP, addressing the challenges in-
troduced by inadequate simulations and protocol closeness as dis-
cussed before. As an example, our TCP/IP Stack simulation benefits
from the introduction of a novel technique called fingerprint revers-
ing, which allows for accurately modeling TCP, ICMP, and UDP
probes at runtime, providing an effective, customized response to
each interaction as initiated by an attacker, largely increasing the
level of engagement and subsequent deception. In addition, our
simulation of the S7comm protocol, which is core to PLC commu-
nications, provides a level of simulation that is able to trick even
proprietary tools such as the Siemens Step7 Manager [8]. Moreover,
HoneyPLC also provides enhanced extensibility features, allowing
for PLCs of different models and manufacturing brands to be effec-
tively simulated. Thus addressing the PLC heterogeneity challenge
just discussed. We have successfully tested this feature using five
real PLCs, allowing for HoneyPLC to currently support out-of-the-
box the Siemens S7-300, S7-1200, and S7-1500; the Allen-Bradley
MicroLogix 1100, and the ABB PM554-TP-ETH PLCs. HoneyPLC
also implements an advanced simulation of the internal memory
blocks featured by modern PLCs, allowing for the automated cap-
ture and storage of malicious ladder logic programs, which can be
later analyzed to reveal new attacking techniques.

The features just discussed are, to the best of our knowledge,
exclusive to HoneyPLC, and also significantly advance the state-of-
the-art for ICS honeypots. This positions HoneyPLC as a convenient
and flexible tool that can serve as a reliable basis for the analysis
and understanding of emerging threats and attacks, as well as the
subsequent development of protection techniques for ICS.

This paper makes the following contributions:

(1) We provide a summary of the limitations and shortcomings of
existing ICS Honeypots and discuss how they address (or not)

emerging malware threats, as well as new ICS technology, e.g.,
new PLC models and ICS network protocols.

(2) We present HoneyPLC, a high-interaction honeypot for PLCs,
which not only solves many of the limitations of related ap-
proaches, but also provides convenient support for further un-
derstanding and eventually defeating emerging threats for ICS.

(3) We introduce the HoneyPLC PLC Profiler Tool, which allows
for the effective simulation of many different PLCs regardless
of their model and manufacturer.

(4) Finally, we provide experimental evidence showing that Hon-
eyPLC is not only effective at engaging and deceiving state-of-
the-art tools for network reconnaissance, but also outperforms
existing honeypots in the literature, achieving a performance
level comparable to real PLC devices.

In an effort to further open and produce reproducible science,
HoneyPLC and all our experimental results are available online .

2 BACKGROUND AND RELATED WORK

In this section, we state the background of PLCs (Sec. 2.1), network
reconnaissance tools Sec. ( 2.2), ICS malware (Sec. 2.3), and ICS
honeypots (Sec. 2.4).

2.1 Programmable Logic Controllers

A Programmable Logic Controller (PLC) is a small industrial com-
puter designed to perform logic functions based on input provided
by electrical hardware such as pumps, relays, mechanical timers,
switches, etc. PLCs have the capability of controlling complex indus-
trial processes, making them ubiquitous in ICS and SCADA environ-
ments [36]. Some popular PLC manufacturers include Siemens [34],
Allen-Bradley [6], and ABB [5]. Internally, PLCs have programmable
memory blocks that store instructions to implement different func-
tions, for example, input and output control, counting, logic gates,
and arithmetic calculations.

2.2 Network Reconnaissance Tools

Nmap. Nmap or “Network Mapper” [22], is a popular open source
utility that is able to detect the operating system and services that
a particular device is running by sending raw IP packets over the
network. Once a given detection scan is completed, Nmap can
either report a single OS match or a list of potential OS guesses,
each guess with its own confidence percentage rate, in the range 0
to 100, where 0 denotes the complete absence of confidence, and
100 denotes a complete confidence on the projected guess result.

PLCScan. PLCScan [33] is a reconnaissance tool used to scan
PLC devices in a given network. PLCScan reveals PLCs that im-
plement the S7comm protocol over TCP port 102 or the Modbus
protocol over TCP port 502. It is written as a command line Python
script and lists PLC information including basic hardware, serial
number, name of the PLC, and firmware version.

Shodan. Shodan is a search engine and crawler [23] specifically
tailored for devices exposed across the Internet, e.g., webcams,
routers, ICS devices, among others. The Shodan Honeyscore (part
of the Shodan API [23])is a tool that checks whether a device is
a honeypot or not. Given an IP address, the Shodan Honeyscore
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Table 1: Comparison of Existing PLC Honeypots in the Literature and HoneyPLC.

Keys: x = No Coverage;

= Limited Coverage; v~ = Optimal Coverage.

Approach/

TCP/IP Stack  Out-of-the-Box

ICS Network Ladder Logic Physics

E il .
Feature xtensibility Simulation PLCs Services Capture Interaction Logging
Gaspot [39] X X X X v’
SCADA
HoneyNet [3] % v . % x
Conpot [15] X v’ X X v’
Digital Bond’s
Honeynet [38] % x v % x v
DiPot [10] X v’ X X v’
SHaPe [19] X X X v’
CryPLH [9] X v’ X X X
S7commTrace [40] X X X v’
Antonioli et al. [7] v’ X v’
HoneyPhy [21] X X X
HoneyPLC v’ v’ v’ v’ v’ X v’
Paper Sections 4.2, :i 4.2, 4.3, 4.4, 6 45
Addressing Feature 5.2 5' 5’ 5.2 5.7 5.8 '

calculates the probability that the host is a honeypot, in a range
between 0.0 and 1.0, where 0.0 means that the host is definitively
a real system, and 1.0 means the host is definitively a honeypot.
According to Shodan’s creator, the following criteria is used for
calculating Honeyscores [24]: (1) too many open network ports;
(2) a service not matching the environment, for example, an ICS
device running on AWS EC2; (3) known default settings of known
honeypots; (4) if a host was initially classified as a honeypot, then
it is highly likely that it remains a honeypot today, even though its
configuration may look real; (5) a Machine Learning classification
algorithm (not disclosed); and, finally, (6) the same configuration
being used across multiple honeypots.

2.3 Exemplary ICS Malware

Stuxnet. The first ever-documented cyber-warfare weapon, Stuxnet,
was a turning point in the history of Cybersecurity [12], targeting

PLC models 315 and 417 made by Siemens to modify their inner lad-
der logic code while concealing itself from ICS administrators [20].
The malware would first spread itself via USB sticks and the local

network, looking for vulnerable Windows workstations. Later, it

would proceed to infect the Step7 and WinCC Siemens proprietary

software by hijacking a Dynamic-Link Library (DLL) file used to

communicate with the PLCs. Finally, the malicious ladder logic pay-
load would be dropped only on the aforementioned models based

on specific manufacturer numbers and memory blocks.

Kemuri Incident. In 2016, attackers were able to gain access
to the network of an undisclosed water supply company identified
by the alias Kemuri [13], targeting hundreds of ICS devices such as
valves, back-office documents, and PLCs that managed the chemical
processes for water treatment. The attackers successfully altered

the amount of chemical and disrupted the water supply, causing
considerable damage and putting human lives at risk.
Crashoverride. Otherwise known as Industroyer [35], CRASH-
OVERRIDE is a sophisticated malware designed to disrupt ICS
networks used in electrical substations. It shows in-depth knowl-
edge of ICS protocols used in the electrical industry that would
only be possible with access to specialized industrial equipment.
CRASHOVERRIDE dealt physical damage by opening circuit break-
ers and keeping them open even if the grid operators tried to close
them back to restore the system. It is believed to have been the
cause of the power outage in Ukraine in December of 2016 [13].

2.4 Honeypots for ICS

Honeypots are computer systems that purposefully expose a set
of vulnerabilities and services that can be probed, analyzed and
ultimately exploited by an attacker [28], allowing for all possible in-
teraction data to be monitored, logged and stored for future analysis.
A summary of existing ICS honeypots is shown in Table 1.
Low-Interaction Honeypots. Low-interaction honeypots offer
the least amount of functionality to an attacker [25, 28]. The services
exposed by this kind of honeypot are usually implemented using
simple scripts and finite state machines. Because of their limited
interaction, attackers may not be able to complete their attack steps
or may even realize that their target is a fake system. On the other
hand, low-interaction honeypots cannot be fully compromised as
they are not real systems, which greatly reduces maintenance costs
and time invested in configuration and deployment. Gaspot [39] is a
low-interaction honeypot written as a Python script that simulates
a gas tank gauge. It can be modified to change temperature, tank
name, and volume. The SCADA HoneyNet Project was the first
honeypot implementation specifically built for ICS [3, 38]. This



project was aimed at developing a software framework capable
of simulating ICS devices like PLCs using Python scripts. Conpot
[15] is also a low-interaction ICS honeypot implementation that
simulates a Siemens S7-200 PLC, and can be manually modified to
simulate other PLCs by editing an XML file.

High-Interaction Honeypots. High-interaction honeypots lie
on the other side of the spectrum, as they strive to offer the same
level of interaction as a real system [25]. CryPLH is a high-interaction
honeypot that simulates a S7-300 Siemens PLC [9], and includes
HTTP, HTTPS, S7comm and SNMP services running on a Linux
host that has been modified to accept connections on specific ports.
The S7comm protocol is simulated by showing an incorrect pass-
word response and the TCP/IP Stack is simulated via the Linux
kernel. S7commTrace [40] provides a high-interaction simulation
of the S7comm protocol and supports the Siemens S7-300 PLC. Anto-
nioli et al. [7] proposed a high-interaction honeypot that leverages
the MiniCPS framework to simulate the Ethernet/IP protocol and a
generic PLC. HoneyPhy [21] provides a novel physics-aware model
to simulate a generic analog thermostat and the DNP3 protocol.

3 LIMITATIONS OF CURRENT HONEYPOTS

Despite the benefits of honeypots previously discussed, current
honeypots for ICS in the literature, shown in Table 1, fail to pro-
vide the necessary features to capture data on the latest and most
sophisticated attacks, exhibiting the following limitations:

L-1 Limited Extensibility. A common limitation in the current
literature is the narrow extensibility support for the many dif-
ferent PLC devices and network services that are used in ICS in
practice and have already been targeted by recent attacks. As
an example, Stuxnet and the Kemuri attack targeted different
kinds of PLCs, whereas CRASHOVERRIDE targeted different
network services, as it was discussed in Sec. 2. Following Table 1,
several approaches in the literature provide limited extensibility
capabilities, which mostly include the manual edition of XML
files to support additional PLCs. This process, besides being
tedious and time-consuming, may be highly error-prone, and
may ultimately reveal the true nature of a honeypot to attack-
ers if implemented incorrectly. This is aggravated by the fact
most of the approaches in the literature support only one or
two PLC models out-of-the-box, as it is shown in Table 3. As
we will discuss in Sec. 4.2, the HoneyPLC Profiler Tool can be
customized to support PLCs of different brands and models.
As an example, HoneyPLC currenlty provides out-of-the-box
support for 5 PLCs of three major brands, as detailed in Sec. 5.2.

L-2 Limited Interaction. Current approaches mostly provide lim-
ited functionality when it comes to TCP/IP Stack simulations,
as well as native ICS network protocols, as described in Sec. 2.
This is a serious limitation that stops current approaches from
extracting value from adversarial interactions and malware. As
an example, CRASHOVERRIDE, leveraged advanced ICS proto-
col features that are not supported by low-interaction honey-
pots. This would ultimately result in the loss of highly valuable
data. Even high-interaction honeypots fail to provide advanced
enough protocol simulations. For example, CryPLH [9] imple-
ments the S7comm protocol using a Python script that only

simulates an incorrect password screen. HoneyPLC solves this
limitation by provided extended support for various networks
protocols implemented by means of its dedicated PLC Profiles,
as we will discuss in Sec. 4.3, and evaluate through experiments
in Sec. 5.4-5.7.

L-3 Limited Covert Operation. The moment an attacker discov-
ers the true nature of a honeypot, it is game over, as the attacker
might stop interacting with it altogether and stop revealing her
attack methods. Therefore, honeypots should aim to fool widely
used network reconnaissance tools, e.g., Nmap, introduced in
Sec. 2.2, to maintain their covert operation. In such regard, the
SCADA HoneyNet Project [3] is the only approach in the liter-
ature that provides a convincing deception to attackers. Also,
Linux Kernel simulations, implemented by several approaches
in the literature, e.g., CryPLH, fail to deceive Nmap. Other work
fails to attempt or even mention such a crucial feature. To over-
come this limitation, HoneyPLC provides advanced network
simulations intended to deceive reconnaissance tools such as
Nmap, as we demonstrate in Sec. 4.3.

L-4 No Malware Collection. The highly specialized nature of ICS
devices calls for better analysis, dissection, and understanding
techniques specifically tailored for emerging malware trends.
In such regard, honeypots are a great tool to collect and ana-
lyze malware [29]. However, as shown in Table 1, there exist
no honeypots for ICS in the literature that can provide such
functionality, which has serious consequences for the security
of ICS in the presence of recent malware-injection attacks. For
instance, Stuxnet injected malicious ladder logic code to the tar-
geted PLCs. To solve this, HoneyPLC provides a novel feature
to capture ladder logic, as described in Sec. 4.4 and Sec. 5.8.

4 HONEYPLC: A CONVENIENT HIGH-
INTERACTION HONEYPOT FOR PLCS

Having described the limitations of existing approaches, we now
present HoneyPLC, an extensible, high-interaction, and malware-
collecting honeypot for ICS. HoneyPLC provides advanced protocol
simulations, e.g., TCP/IP, S7comm, HT TP, and SNMP, achieving an
interaction level comparable to real PLCs, ultimately introducing
low-to-moderate levels of risk as well as low maintenance costs. We
start by providing an illustrative use case scenario, which exempli-
fies how the different inner modules and components of HoneyPLC
interact with an attacker at runtime when an attempt to compro-
mise a PLC is made. Later, we elaborate on how HoneyPLC solves
each of the limitations highlighted in Sec. 3.

4.1 Illustrative Use Case Scenario

Initial Setup. As it will be further discussed in Sec. 4.2, HoneyPLC
can be extended to simulate PLCs of different models, communica-
tion protocols, and/or manufacturer brands. With that in mind, the
very first step when using HoneyPLC includes choosing the PLC
Profile featuring the desired real-life PLC that will be exposed to
attackers as a honeypot. This process is shown in Fig. 1 (Step 1).
PLC Profiles can be chosen from a dedicated repository included as



a part of HoneyPLC. For the rest of this case scenario, let us assume
the S7-1200 model is selected.

Fingerprinting. Once HoneyPLC is deployed, an attacker may
try to fingerprint it using a reconnaissance tool such as Nmap or
PLCScan (Fig. 1 (Step 2)). When initial contact is established, all the
TCP/IP requests will be handled by the HoneyPLC’s Personality
Engine, which in turn, is based on features provided by the Hon-
eyd [2] tool, as it will be further discussed in Sec. 4.3. (Fig. 1 (Step
3)). Since the S7-1200 PLC model was selected in the beginning, the
Personality Engine will use the appropriate fingerprint contained
within the PLC Profile to reply to communications started by Nmap.
At this point, Nmap may confirm to the attacker that she is dealing
with a PLC and not a honeypot, as we show in Sec. 5.

Reconnaissance. In a subsequent step, an attacker might try
to initiate an S7comm connection to check what PLC memory
blocks are available. As mentioned in Sec. 2, such a process is
crucial when attempting to modify the inner ladder logic code of a
PLC. The connection is first handled by the HoneyPLC’s Network
Services module, and later forwarded to a dedicated S7comm server.
(Fig. 1 (Step 4)). The S7comm server then replies with the requested
information and the Integration Framework forwards the replies to
the attacker. In the meantime, the S7comm server is logging all the
interactions, including the attacker’s source IP address and memory
block requests made to the PLC.

Code Injection. At this point, when the attacker identifies a
PLC memory block suitable for injection, he/she uses an S7comm
application like PLCinject [4] to load ladder logic code into the PLC,
effectively overwriting any pre-existing code and introducing a
custom-made malicious payload. (Fig. 1 (Step 5)). As a result, the
HoneyPLC’s S7comm server will write the code into the dedicated
HoneyPLC repository, which is managed by the Interaction Data
module. (Fig. 1 (Steps 6 and 7)).

After this case scenario has been completed, HoneyPLC may
have been able to collect crucial information about the attack inside
its logging infrastructure: (1) the public IP address of the attacker,
(2) the specific PLC memory blocks the attacker was targeting, and
best of all, the critical piece, (3) the ladder logic program he/she has
injected. Later on, such a malware sample can be analyzed at the
byte level to get a better understanding of the malicious instructions
that the attacker wanted the PLC to execute. In Sec. 6, we elaborate
on this idea as a part of our future work.

4.2 Supporting PLC Extensibility

PLC Profiles. The PLC Profile Repository, shown in Fig. 1 (Step 1),
is a collection of PLC Profiles that hold all the required data to
simulate a given PLC. It communicates with the Integration Frame-
work and Network Services modules to customize the PLC that
HoneyPLC is simulating at any given time and addresses the lack
of extensibility discussed in Limitation L-1. In turn, a PLC Profile is
a collection of three discrete datasets, which allow HoneyPLC to
simulate a particular PLC device by means of highly customized sim-
ulations of network interactions, as it will be discussed in Sec. 4.3.

e SNMP MIB. A Management Information Base (MIB) is an stan-
dard used by SNMP agents. Because most PLC devices imple-
ment a simple SNMP agent, a custom MIB is needed for Honey-
PLC to provide a realistic SNMP simulation.

/ Integration Framework \
Subsystem Personality |
@ 1 @

PLC i @

Profile Network Services

Repository

s7comm

Ladder Logic
Capture

HTTP Server

| SNMP Agent

7(6)

N’
Interaction Data N
le—
Captured Ladder Logic Interaction Logs

Figure 1: The Architecture of HoneyPLC. Before deploy-
ment, a PLC Profile is selected from a repository (1). Later,
at runtime, an attacker may initiate contact via a dedicated
protocol, e.g., S7comm (2). Communications are then pro-
cessed by the Personality Engine (3), later forwarded to the
S7comm Server (5), and are eventually logged by the Inter-
action Data Framework (6). Finally, all code injected by the
attacker is captured within the repository module (7).

HoneyPLC

e Nmap Fingerprint. A plain text file with the Nmap fingerprint
to effectively simulate the TCP/IP Stack of a particular PLC
device. As it will be detailed later in this Section, this fingerprint
allows HoneyPLC to effectively engage and deceive well-known
reconnaissance tools such as Nmap.

e Management Website. Some PLC devices provide a light web-
server with a splash screen and some configuration options.
Because of this, a PLC Profile includes a copy of the such web-
site, including, but not limited to, image, HTML and CSS files.

PLC Profiler Tool. The HoneyPLC Profiler Tool automates the
creation of new HoneyPLC Profiles. It interfaces with three different
applications: Nmap, (Sec. 2.2), snmpwalk [30], and wget [31]. To
obtain the profile for a target PLC, the HoneyPLC Profiler requires
the IP address of the PLC device as the only input. Then, the Profiler
runs a series of queries to obtain the three discrete sets of data from
the target PLC described before: an SNMP MIB, a website directory,
and an Nmap fingerprint. First, snmpwalk is used for reading all
the available Object IDs (OIDs) from the public community string,
creating an identical MIB to the one used by the PLC. OIDs may
include, among other important configuration settings, the unique
identifier of the PLC, as well as its base IP address. Second, Nmap’s
OS detection is used to get the TCP/IP stack fingerprint of the target
PLC, in a process that includes scanning all well-known TCP and
UDP ports. This fingerprint will be later leveraged by HoneyPLC’s
Integration Framework to provide meaningful TCP/IP interactions
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Figure 2: The HoneyPLC Personality Engine: First, a PLC
Profile is selected from the repository, including its Nmap
Fingerprint (1). When an attacker tries to fingerprint Hon-
eyPLC using Nmap, such a tool will send a series of Probes
to determine the OS or Device (2). HoneyPLC will then re-
ply with appropriately crafted responses that simulate a real
PLC, thus effectively deceiving Nmap and the attacker (3).

as aresponse to requests initiated by an attacker. Third, wget is used
to download a complete copy of the splash screen or administration
website, if any. Finally, the HoneyPLC Profiler will create a custom
directory that can be used by HoneyPLC, inside its dedicated PLC
Profile Repository, shown in Fig. 1 (1), to simulate the target PLC.

4.3 Supporting Operational Covertness

TCP/IP Simulation. Within HoneyPLC’s Integration Framework,
depicted in Fig. 1, a sophisticated TCP/IP Stack simulation is im-
plemented by leveraging Honeyd [28], a popular framework for
honeypot simulation, as well as Nmap, discussed in Sec. 2.2. The pro-
cess is depicted in Fig. 2. Initially, when a new PLC is to be modeled
by HoneyPLC, Nmap is used to generate a detailed TCP/IP Stack
fingerprint for it. Next, such a fingerprint is integrated with the Hon-
eyd fingerprint database, by appending it to Honeyd’s nmap-os-db
text file. Later, at runtime, when a tool like Nmap tries to fingerprint
a HoneyPLC host, HoneyPLC Personality Engine, leveraging Hon-
eyd, will respond with the appropriate fingerprint information. To
achieve this, the Engine reads a particular fingerprint from Nmap’s
database and reverses it, which means that when Honeyd simulates
a particular device, it introduces its IP/TCP Stack peculiarities: TCP
SYN packet flags, IMCP packet flags, and timestamps.

The generation of accurate Nmap fingerprints imposed a variety
of challenges. First, PLC devices of different manufacturers and mod-
els use different UDP and TCP ports that are not standard, or may
not be properly defined within the device manuals, e.g., port 2222
for the MicroLogix 1100 PLC. The lack of heterogeneity required us
to perform a manual inspection, which was time-consuming and
error-prone. Second, we analyzed the Nmap reports that contain
the fingerprint results and modified the format to be compatible
with the Honeyd fingerprint database. Additionally, the creation
of accurate Honeyd templates brought its own set of challenges.
For HoneyPLC to provide enhanced interaction capabilities, which
can engage attackers for extended periods of time (as we further
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Figure 3: The HoneyPLC SNMP and the Webserver Agents.
The MIB database as well as the Website HTTP files, ob-
tained from a PLC Profile, are first loaded by each agent (1).
Then, the Attacker may use SNMPWalk as well asan HTTTP
Client to established connection with HoneyPLC (2). Later,
each agent with reply to each request using the information
obtained from the PLC Profile (3).

describe in Sec. 4.3), we significantly improved the standard sim-
ulation scripts included within Honeyd. Specifically, we used the
subsystem virtualization feature provided by Honeyd: this feature
facilitates the integration of the different HoneyPLC components.

S7comm Server. Within HoneyPLC’s Network Services Mod-
ule, depicted in Fig. 1, the S7comm server provides a sophisticated
simulation of the Siemens proprietary protocol. It simulates a real
Siemens PLC and exposes several memory blocks via TCP port 102.
At the time of writing this paper, Siemens had not released the
specifications of S7comm protocol and the information that is avail-
able has been collected by third parties like the Snap7 project [27]
and the Wireshark Wiki [1]. We leveraged the Snap7 framework
[27, 32] to write an S7comm server application in C++. We modified
and recompiled the source code of the main Snap7 library to add
our own features. These include logging the S7comm interactions,
ladder logic capture, and PLC firmware specifications for all three
Siemens PLC models. For example, CPU model, serial number, PLC
name label, copyright among others.

SNMP Server. Within HoneyPLC’s Network Services Module,
the SNMP Agent implements an advanced simulation of the SNMP
protocol along with believable MIB data, effectively allowing Hon-
eyPLC to reply to any external SNMP server query. SNMP is com-
monly used in practice to monitor network connected devices and
listens to requests over UDP port 161. Since real PLCs do implement
SNMP agents, implementing this sub-component adds to the de-
ception capabilities of HoneyPLC. Our simulation process, shown
in Fig. 3 (top), can be described as follows: In practice, a typical
SNMP setup includes a Manager as well as an Agent module. The
SNMP Manager continually queries the Agent for up-to-date data.
A SNMP Agent exposes a set of data known as Management In-
formation base or MIB. In order to simulate the SNMP protocol,
we use the light Python application snmpsim, which simulates a
SNMP Agent based on real time or archived MIB data. When a
SNMP request is received by HoneyPLC, the SNMP Agent replies
with an OID as a real PLC would do.



HTTP Server. Finally, the HoneyPLC’s HTTP server provides
an advanced simulation of the HTTP server of the Real PLCs and
serves websites found in real PLCs, as illustrated in Fig. 3 (bottom).
As an example, most Siemens PLC devices include an optional
HTTP service to manage some of its internal configuration features.
This functionality was in turn implemented with lighttpd [18], a
lightweight webserver to handle all HTTP quests. When an HTTP
request hits HoneyPLC, its Integration Framework relays the re-
quest to the lighttpd server. Later, the webserver replies with the
website data from a HoneyPLC profile.

4.4 Ladder Logic Collection

HoneyPLC’s S7comm Server holds the novel Ladder Logic Capture
feature. It writes any ladder logic program that an attacker uploads
to HoneyPLC. When an adversary uploads a ladder logic program
to any of the S7comm Server memory blocks, while trusting it to
be a real PLC, this feature automatically writes them into the file
HoneyPLC filesystem with the corresponding timestamp. These
captured ladder logic programs can be analyzed at a later stage at
the byte level to expose ladder logic instructions and then extract
new attack patterns used by adversaries targeting PLCs. We imple-
mented the Ladder Logic Capture component leveraging the Snap7
framework using C++, in a similar fashion as the S7comm Server.
Additionally, we modified the Snap7 framework main library files
to integrate this feature at the Linux OS level.

4.5 Implementing Record Keeping via Logging

The Interaction Data component holds all of the interaction data
gathered by HoneyPLC. It maintains two kinds of data. First, it
contains all logs produced by our S7comm servers, the SNMP agent
and the HTTP server. Second, it contains all the ladder logic pro-
grams that get injected via the S7comm server. This component
communicates directly with the Network Services component. We
configured Honeyd, lighttpd, snmpsim and the S7comm Server to
automatically log all interactions. The S7comm Server writes to
the file system all interactions including IP address of originating
host, timestamp, memory block ID in the case of reading or writing.
Next, snmpsim logs IP information, what OIDs were accessed and
timestamps. Finally, the lighttpd webserver includes all the major
features of a modern webserver with detailed logging that includes
IP address information, accesses website files and timestamps. All
of them log every interaction all the time.

5 EVALUATION

As shown throughout Sec. 4, HoneyPLC is designed to effectively
deceive attackers into believing that they are dealing with real
PLCs. This section starts by enumerating a set of experimental
questions, which are based on the limitations of existing approaches
as presented in Sec. 3. Then we present a series of experiments
designed to provide affirmative answers to each question backed up
by experimental evidence. For this purpose, we used the following
PLC models: Siemens S7-300, S7-1200, and S7-1500, as well as the
Allen-Bradley MicroLogix 1100 and the ABB PM554-TP-ETH, which
are shown in Fig. 4, as these models are common in practice. As an

Table 2: Experimental Comparison of PLC Honeypots.

Keys: X = No Coverage; = Limited Coverage; Vo= Optimal Coverage.

SCADA §7-
Expr. Conpot Honey- Gaspot comm- Honey-
[15] Net [39] Trace PLC
(3] [40]
Nmap
(Sec. 5.4) v v
PLCScan
(Sec. 5.4) v NiA v
Honey-
score v’ X X X
(Sec. 5.5)
Step 7
Manager X X N/A X
(Sec. 5.6)
PLCinject % %
(Sec. 5.8)

Figure 4: PLCs procured for experimental purposes includ-
ing, from left to right, Siemens S7-300, S7-1500, S7-1200,
Allen-Bradley MicroLogix 1100, and ABB PM554-TP-ETH.

example, a queryZ on Shodan [23], shows more than a 1,700 Internet-
facing PLCs across several different countries. For each experiment,
we describe its environmental setup, the methodologies used, and
the results obtained. Table 2 shows a summary of the experiments
we performed comparing HoneyPLC with other honeypots in the
literature whose implementation were either available online or
were obtained from their authors upon request. A description of
the obtained results is provided next, and an extended discussion
comparing HoneyPLC with related work is shown in Sec. 6.

5.1 Experimental Questions

Q-1 Can HoneyPLC support different real PLCs?
Since current approaches provided limited support for various
types of PLCs being widely used by ICS in practice, we were
interested in exploring the capabilities of HoneyPLC to model
different PLCs using the PLC Profiler Tool described in Sec. 4.2.
This question is related to Limitation L-1, as discussed in Sec. 3.
We strive to answer to this question in Sec. 5.2 and 5.3.

Q-2 Can HoneyPLC conceal its honeypot nature from attack-
ers?

Zhttps://www.shodan.io/search?query=siemens+port%3A102.
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More specifically, can HoneyPLC fool widely-used reconnais-
sance tools? Also, we were interested in obtaining evidence
regarding the interactions HoneyPLC may have obtained when
deployed in the wild, i.e., via an Internet connection. This ques-
tion is related to Limitations L-2 and L-3. We elaborate on this
question in Sec. 5.4, Sec. 5.5, and Sec. 5.7.

Q-3 Can HoneyPLC effectively capture Ladder Logic code?
Since capturing Ladder Logic code represents a highly desir-
able feature for analyzing threats to ICS, we were interested in
exploring the capabilities of HoneyPLC, as described in Sec. 4,
to properly carry out such task. This question is related to
Limitation L-4 and is addressed in Sec. 5.8.

5.2 Case Study: Profiling Siemens PLCs

As mentioned in Sec. 3, current state-of-the-art honeypots for PLCs
have been modeled over a limited number of PLCs, as shown in
Table 3, and support for any extensions is quite limited. Therefore,
we were interested in exploring the capabilities of HoneyPLC to
support PLCs of different models and manufacturers.

Environment Description. For our first case study, we pro-
cured three Siemens PLCs: the S7-300, the S7-1200 and the S7-1500
models, which are shown in Fig. 4. Each PLC was connected to a
special power supply and data or Ethernet cables. Additionally, we
used the Siemens Step7 Manager, tools to configure IP addressing.
We also deployed the HoneyPLC Profiler Tool and Python 3 in a
laptop host where we connected our PLCs.

Methodology. We connected each PLC model to our experi-
mental laptop host and used our command-line-based HoneyPLC
Profiler Tool to create the PLC Profiles for the three PLCs. To launch
the tool, we input the PLC IP address and the name of PLC Profile
directory. While the HoneyPLC Profiler Tool starts querying data
from the PLC progress messages are shown including error mes-
sages, if any. We encountered some difficulties while developing
and testing the Profiler Tool. First, we had to expand the number
of ports scanned to obtain a better Nmap fingerprint, so that Nmap
reports it with a higher confidence. We also had to make adjust-
ments to download the PLC websites to include images and correct
HTML paths. Also, it was necessary to manually modify the PLC
profile HTML files to correct broken links.

Results. Overall, we were successful in creating all three PLC
profiles. These profiles were saved in our experimental laptop host
file system and were later used in the other experiments depicted
in this Section. The HoneyPLC Profiler Tool took approximately 5
minutes to create each profile and we only had to make some small
manual modifications to some HTML files, as mentioned before.
For PLCs produced by Siemens, the retrieval of their corresponding
profiles may be facilitated if the SNMP and the web server services
are properly activated beforehand by following the instructions
provided by the manufacturer, or by using any other S7comm-
enabled software, e.g., the Step7 Manager. Failure to perform this
step may result in the creation of an incomplete profile.

5.3 Case Study: Allen-Bradley and ABB PLCs

Additionally, we were interested in exploring the capabilities of
HoneyPLC to support PLCs manufacturers other than Siemens, so
we can provide some general recommendations for practitioners
interested in obtaining additional PLC profiles.

Table 3: PLC Devices Supported by ICS Honeypots.

Supported PLC Devices

Veeder Root Guardian AST
Siemens CP 343-1
Siemens S7-200,
Allen Bradley LOGIX5561

Approach

Gaspot [39]
SCADA HoneyNet [3]

Conpot [15]

Digital Bond’s Modicon

Honeynet [38] Quantum PLC
DiPot [10] Siemens S7-200
SHaPe [19] IEC 61850-Compliant PLC
CryPLH [9] Siemens S7-300

Siemens S7-300
Generic PLC
Generic Analog Thermostat
Siemens $7-300, $7-1200, S7-1500
Allen-Bradley MicroLogix 1100
ABB PM554-TP-ETH

S7commTrace [40]
Antonioli et al. [7]
HoneyPhy [21]

HoneyPLC

Environmental Description. For this case study, we procured
the Allen-Bradley MicroLogix 1100 and the ABB PM554-TP-ETH
PLCs, which are shown in Fig. 4. Additionally, we used Allen-
Bradley and ABB software tools to configure their IP addresses.

Methodology. As with our previous case study, we deployed
the HoneyPLC Profiler Tool and Python 3 in a laptop host, and
connected each PLC to a special power supply. Also, we connected
each PLC model to our experimental laptop host and used our
command-line-based HoneyPLC Profiler Tool as before.

Results. We successfully produced a profile for each of the PLCs
under analysis, and obtained the following recommendations to
practitioners. First, for non-Siemens PLCs it may become necessary
to identify the network services they provide, as different vendors
may implement a variety of protocols on different ports. As an
example, the Allen-Bradley MicroLogix 1100 PLC uses port 80 to
implement a light web server, similar to Siemens PLCs, whereas
such a feature is not implemented by the ABB PM554-TP-ETH. Sec-
ond, both Non-Siemens PLCs under study also fail to support the
SNMP service, which prevents the HoneyPLC Profiler Tool from
retrieving a MIB database. Third, the Allen-Bradley MicroLogix
1100 PLC implements the industry standard EtherNet/IP proto-
col on port 2222 for configuration purposes, which differs from
Siemens models that use the proprietary S7comm protocol. These
differences may ultimately result in PLC Profiles that are different
from the ones obtained for Siemens PLCs, and may need to be
subsequently addressed on a case-by-case basis. Fourth, whereas
the Siemens PLCs use the proprietary S7comm protocol for load-
ing Ladder Logic programs, the Allen-Bradley MicroLogix 1100
uses the EtherNet/IP protocol. In such regard, the ABB PM554-TP-
ETH PLC uses the Nucleus Sand Database, which is mostly used
for database record keeping, and whose use in PLC devices is not
customary. Because both protocols are not currently supported by
HoneyPLC, additional modifications may be required. For exam-
ple, for the M554-TP-ETH PLC Profile we modified the Honeyd
template to open port 1201 as a Nucleus Sand DB simulation that
can be used through the subsystem virtualization is not currently
supported. For the MicroLogix 1100 PLC Profile, we modified the
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Figure 5: Nmap Scan Results. All three Profiles obtained at
least a 90% confidence rate. The S7-300 and S7-1200 Profile
obtained rates comparable with their real counterparts.

Profiler Tool port scan range to include not only well-know ports
but also registered ports such as port 2222.

Finally, Table 3 provides a comparison of the PLC models sup-
ported out-of-the-box by related honeypots for ICS, which were
also shown in Table 1. The positive results obtained in our two case
studies give support to answer Q-1 in the affirmative.

5.4 Resilience to Reconnaissance Experiment

The moment the true nature of HoneyPLC (or any other honeypot)
is revealed to an attacker, the quantity and value of the gathered
interaction data may significantly decrease. Therefore, we aimed to
test the resilience of HoneyPLC to Nmap and PLCScan, described
in Sec. 2, which are well-known tools for reconnaissance. Addi-
tionally, we tested how existing honeypots, namely Gaspot [39],
S7commTrace [40], SCADA HoneyNet [3] and Conpot [26], per-
form in this regard.

Environment Description. Our experimental setup was com-
posed of two physical computers: a desktop and a laptop host. The
desktop host featured Ubuntu 18.04 LTS along with HoneyPLC,
as well as the following tools: Honeyd, lighttpd, snmpsim, and
S7comm server. We built Honeyd version 1.6d from source, the
latest version is available in the official GitHub repository [2]. Also,
we installed the lighttpd web server version 1.4.45. Next, we in-
stalled snmpsim version 0.4.7 and all its dependencies. Finally, we
installed our S7comm server and our custom library. Conversely,
the laptop host included the latest version of Nmap 7.80 as well as
the three Siemens PLCs fingerprints in Nmap’s fingerprint data-
base nmap-os-db that were obtained as a result of the previous
experiment. Additionally we installed the latest version of PLCScan
obtained from GitHub [33]. Both hosts were directly connected via
an Ethernet cable. Subsequently we downloaded and deployed the
related honeypots mentioned before, and connected them to the
scanning host so that all of them would be in the local network.

Methodology. To create a baseline to compare the results of our
experiments, the Nmap confidence data of the real PLCs featured
in the previous experiment was obtained. With that in mind, a

$7-1500 (HoneyPLC) |-

S7-1200 (Shodan Real) }
$7-1200 (HoneyPLC) |- |

$7-300 (Shodan Honeypot) (-

$7-300 (Shodan Real) |- } } }

S7-300 (HoneyPLC) (-

|
0 0.1 0.2 0.3 0.4 0.5
Honeyscore (0.0 - 1.0)

Figure 6: Shodan Honeyscore Results. Our HoneyPLC PLC
Profiles perform better than other honeypots found in
Shodan and at the same level as real PLCs.

second test environment was composed of an additional host with
Ubuntu 18.04 LTS and Nmap 7.80. Later, the additional host was
directly connected to one of the three different PLCs (S7-300, S7-
1200 and S7-1500) using an Ethernet cable. We installed the Step7
Manager in order to configure the network settings of the PLCs.
Next, two different sets of Nmap scans were conducted with OS
detection enabled. One set for HoneyPLC and another set for the
real PLCs. Each PLC model was scanned 10 times. For the Honey-
PLC experiment the corresponding HoneyPLC Profile was installed
so that the aforementioned applications were correctly configured.
Next, we used PLCScan to scan each PLC Profile in similar fash-
ion as the Nmap methodology. Afterwards we turned to Gaspot,
S7commTrace, SCADA HoneyNet and Conpot. Each honeypot was
scanned with Nmap’s OS detection enabled 10 times. Finally, we
used PLCScan on S7commTrace, SCADA HoneyNet and Conpot.
Gaspot was omitted as it does not support the S7comm protocol.
Results. The results of our Nmap experiment can be seen in
Fig. 5, and show that for all three PLC models, the real PLCs gets
the best confidence by a small margin. However, our PLC Profiles
as provided by HoneyPLC were really close behind, thus providing
positive evidence that our approach can provide effective covert-
ness, as required by our question Q-2. These results are encouraging
since for all scans across all sets Nmap identified the correct PLC
model with the highest confidence. Our PLCScan experiments were
also successful, as we were able to obtain and provide real PLC data
using PLCScan against HoneyPLC for all three PLC Profiles. In addi-
tion, SCADA HoneyNet was identified as a Siemens CP 343-1 PLC,
however, Gaspot, S7commTrace and Conpot were fingerprinted
as Linux OS with a 100% confidence, with no mention of any PLC
device. Regarding PLCScan, Conpot was identified as a S7-200 PLC
and SCADA HoneyNet and S7commTrace provided connection
information but displayed an empty PLCScan report. Our results
are even more significant due to the fact a Linux kernel simulation
of the TCP/IP Stack, as implemented by several related approaches,
including Gaspot and Conpot, will not deceive Nmap [9].



5.5 Shodan’s Honeyscore Experiment

As with the previous experiment, Shodan, described in Sec. 2.2, is
actively leveraged in practice, along with its corresponding Shodan
API to detect honeypots exposed to the Internet with a high degree
of accuracy. Therefore, we were interested in the capabilities of
HoneyPLC to deal with this state-of-the-art reconnaissance tool.
Environment Description. For this experiment, we deployed
three AWS EC2 instances accessible from the Internet with the
following specifications: 2 vCPUs, 4GB RAM and Ubuntu 18.04 LTS
OS, exposing TCP ports 80 and 102 and UDP port 161. Then we
deployed HoneyPLC on each one of them featuring all of our three
PLC profiles, following the configuration steps detailed in the pre-
vious experiment. We also deployed four additional AWS instances
hosting Conpot, Gaspot, S7commTrace and SCADA HoneyNet.
Methodology. We obtained the Shodan Honeyscores, whose
methodology is described in Sec. 2.2, of each of our HoneyPLC
PLC Profiles, other honeypots for the same PLC models that were
publicly exposed to the Internet and Gaspot, Conpot, S7commTrace
and SCADA HoneyNet. For such a purpose, we leveraged Shodan
to gather data of Internet-facing real PLCs and PLCs flagged as
honeypots. We looked at open ports, geolocation, Honeyscore, PLC
model and IP addresses. Later, we compared these data to the one
obtained for our HoneyPLC PLC Profiles. Once deployed to the
Internet, it took about a week for Shodan to index our honeypots
and identify the S7comm and HTTP services on ports 102 and 80.
Results. The results of our Shodan experiment, depicted in Fig-
ure 6, show that Shodan assigns a Honeyscore of 0.0 to our S7-300
profile and how this Honeyscore compares to real S7-300 PLCs and
other S7-300 honeypots found in the wild by. Moreover, our S7-1200
and S7-1500 profiles got a 0.3 Honeyscore, which is comparable
with the one obtained by real S7-1200 PLCs as indexed by Shodan.
Unfortunately, at the time this experiment was performed, we were
not able to find any S7-1200 honeypots in Shodan for comparison.
Regarding the other four AWS instances, S7commTrace, Gaspot,
and SCADA HoneyNet were not indexed by Shodan as they crashed
when Shodan’s crawler tried to interact with them. Thus they could
not be assigned a Honeyscore. Conpot, however, was successfully
indexed and was assigned a 0.3 Honeyscore.
Overall, these results add compelling evidence with respect to
Question Q-2, showing that HoneyPLC is effective at maintaining
covertness against state-of-the-art reconnaissance tools.

5.6 Step7 Manager Experiment

We designed an experiment to test the capabilities of the HoneyPLC
S7Comm Server, discussed in Sec. 4.3, against Step7 Manager [8],
a Siemens proprietary software used to configure as well as to
write and upload ladder logic programs to PLCs. For comparison
purposes, we attempted to perform the same experiment on Conpot,
the SCADA HoneyNet, and S7commTrace, which claim support for
the S7comm protocol, as shown in Table 2.

Environment Description. For this experiment, we used a
Windows XP virtual environment installed on a desktop host. Ad-
ditionally, we installed HoneyPLC, the related work honeypots
shown in Table 2, and all three Siemens PLC Profiles in different
Ubuntu 18 LTS VMs and connected them to the Windows XP host.

Table 4: Comparison of S7comm function codes.

S7comm Implementation Functions Subfunctions

HoneyPLC 13 18
S7commTrace 12 14

Methodology. To test the compatibility of a particular honey-
pot with Step7 Manager, we performed the following: First, we
attempted a direct, initial connection to the tool by using the ‘Go
Online’ GUI feature. Second, we used Step7 Manager to list all the
memory blocks contained within a given honeypot. Third, we also
tried to upload a memory block to each honeypot, and finally, in a
reciprocal action, we tried to download the contents of a memory
block, which was previously-stored by each honeypot under test.

Results. Our results show that HoneyPLC is the only implemen-
tation capable of handling all of the functionality previously men-
tioned, as is shown in Table 2. Conpot, S7commTrace, and SCADA
HoneyNet were able to establish the initial connection, however,
the Step7 Manager threw a connection timeout error, preventing
any further interaction and resulting in an aborted execution.

Moreover, as S7commTrace is a high-interaction honeypot that
implements features similar to the ones provided by HoneyPLC’s
S7comm Server, we strove to provide an extended comparison be-
tween them. The HoneyPLC S7comm Server improves over S7comm-
Trace by providing more functions and subfunctions as shown in
Table 4. Specifically, it adds an error response function and in-
sert block, delete block, blink LED ,and cancel password subfunc-
tions. The error response function and the delete and insert block
functions, in particular, are important when injecting ladder logic
programs and connecting with Step7 Manager. Overall, besides pro-
viding compatibility with Step7 Manager, HoneyPLC also provides
enhanced capabilities for capturing ladder logic, e.g., reading and
writing memory blocks, which are not supported by S7commTrace.

5.7 Internet Interaction Experiment

In order to explore the capabilities of HoneyPLC to interact with
external, non-controlled agents, e.g., attackers, we designed an ex-
periment intended to expose the PLC Profiles discussed in previous
experiments to remote connections via Internet.

Environment Description. We leveraged the environmental
setup we designed for our previous Shodan-based experiment in
Sec. 5.5. Also, we used the same AWS EC2 instances equipped with
PLC Profiles for the S7-300, S7-1200, and S7-1500 PLCs.

Methodology. We exposed the EC2 instances to the Internet
for a period of 5 months. Using the HoneyPLC logging capabilities
discussed in Sec. 4.5, we logged all received interactions.

Results. As a result of this experiment, more than 5GB of data
were recorded. Table 5 shows the different S7comm function com-
mands received by each PLC Profile. The fact that we recorded these
functions means that external agents interacted with HoneyPLC
beyond a simple connection performing reconnaissance tasks. Ad-
ditionally, we received 4 PLC Stop functions on our S7-300 Profile,
which stops the current ladder logic program execution, suggesting
that external agents tried to disrupt the PLCs’ operation.

Table 6 shows that our honeypots also received thousands of
HTTP conversations and logged multiple HTTP authentication



Table 5: S7comm Function Commands Received.

PLC Setup Read PLC List
Profile Communication SZL Stop Blocks
S7-300 600 1013 4 80
S$7-1200 202 324 0 0
S$7-1500 292 343 0 0

Table 6: HTTP and SNMP Interactions Received.

PLC HTTP HTTP Login SNMP Get
Profile Conversations Attempts Requests
$7-300 2060 205 1925
$7-1200 1791 30 567
$7-1500 13 0 1271

attempts on their administration websites, including the usernames
and passwords used by the external parties. Additionally we also
recorded thousands of SNMP get requests that downloaded our
PLC Profile’s MIBs several times. Table 7 shows the distribution
of S7comm connections based on geographical location. It can
be noted that countries with most connections have historically
been either the target or the initiators of attacks against ICS [13]
recorded in the literature. Finally, at the time of writing this paper,
no attempts to inject malicious ladder logic into our honeypots were
recorded. Such an attack would have been signaled by an attempt
to write a memory block inside a PLC. Despite this limitation, the
amount and nature of the interactions obtained provide additional
support for affirmatively answering Question Q-2, showing that
HoneyPLC can effectively engage external agents and tools.

5.8 Ladder Logic Capture Experiment

Finally, we were interested in exploring the capabilities of Honey-
PLC to properly collect Ladder Logic malware that is injected by
attackers, following the Case Scenario described in Sec. 4.1.

Environment Description. For this experiment, we leveraged
the same HoneyPLC AWS test environment described in Sec. 5.5
for our Shodan experiment. Additionally, we locally deployed Con-
pot, Gaspot, S7commTrace and SCADA HoneyNet. We faced some
problems deploying the SCADA HoneyNet as it is currently not
maintained at all (the latest version was released in 2004), how-
ever, we were able to deploy the S7comm portion of the honeypot,
enabling us to conduct this experiment. To test our implementa-
tion, we employed PLCinject [17], a research tool published by
the SCADACS team, which is capable of injecting arbitrary com-
piled ladder logic programs into a PLC memory block. We also set
up a laptop host with Ubuntu 18.04 LTS installed with the latest
version of PLCinject available on Github [4]. Since PLCinject also
leverages the Snap7 framework, we installed a custom library and
compiled PLCinject from source. We also used the Windows XP
host described in Sec. 5.6 with Step7 Manager.

Methodology. Fig. 7 illustrates our setup and methodology. The
PLCinject host contains the ladder logic program sample that PL-
Cinject will upload into HoneyPLC, which resides inside an AWS

PLCinject host
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Figure 7: Capturing Ladder Logic: Initially, the attacker
selects a malicious program and leverages PLCinject (1),
which then establishes communication with an AWS in-
stance running HoneyPLC (2). Malicious code is injected
into a previously-selected memory block exposed by the
S7comm server (3), and finally written into a file reposi-
tory (4).

Table 7: S7comm Connections Received by Geolocation.

Geo- S7-  S7- S7- Geo- S7-  S7- S7-
location 300 1200 1500 location 300 1200 1500
United Nether-
States 359 142 250 lands 22 13 11
United
Kingdom 2 1 3 Japan 8 2 2
Turkey 2 0 1 Ttaly 1 0 0
Switzer 5 1 feland 1 1 2
land
Sweden 1 1 1 Hong 2 1 1
Kong

South
Korea 1 0 0  Germany 18 9 12
Slovakia 0 1 1 France 10 5 7
Singapore 4 5 Denmark 1 1 0
Russia 28 12 14  China 42 16 26
Romania 6 2 4  Canada 3 2 3
Poland 1 0  Bulgaria 2 1
Panama 2 1 3 Belize 3 3 3

instance exposing a set of standard PLC memory blocks. We lever-
aged the capabilities of PLCinject to connect and interact with the
HoneyPLC host, eventually injecting the desired Ladder Logic pro-
gram by using the command line. Later, using the Step7 Manager
GUI we created a new project and wrote a sample ladder logic to be
injected into HoneyPLC. Next, we used the Step7 Manager to list
the available memory blocks and then use the upload function to
inject the sample ladder logic program into HoneyPLC. Later, we
conducted another set of experiments focused on Gaspot, Conpot,
S7commTrace, and the SCADA HoneyNet. We configured each of
the honeypots with the correct IP addresses and ports, and used
PLCinject and the Step7 Manager to write the sample program into
them, following the same process used for HoneyPLC.



Results. Our experiments were successful as we were able to
inject a sample ladder logic program into HoneyPLC using both, PL-
Cinject and the Step7 Manager. After the injection was completed,
we logged into our honeypot file system and found the ladder logic
file with its corresponding timestamp, which matched the contents
of the blocks previously updated to PLCinject, as described in the
previous paragraph. More to the point, after the Step7 Manager
injection was completed we downloaded our own sample program
from HoneyPLC’s S7comm server and used the ladder logic editor
(included with Step7 Manager) to corroborate that our sample pro-
gram was in fact saved in HoneyPLC’s S7comm server. It is worth
mentioning that the Step7 Manager did not crash or threw any
errors while interacting with HoneyPLC’s S7comm server. This
adds evidence as to the level of interaction that HoneyPLC provides.
Regarding the Gaspot honeypot, our results show that it is not
possible to inject any program into it. In fact, the TCP connection
times out, and there is no reply. The results from Conpot show
that it can, in fact, open a connection to TCP port 102, however, it
is reset, and the program upload cannot continue. S7commTrace
results in the S7comm connection not being established. Finally,
the S7comm portion of the SCADA HoneyNet accepts the TCP port
102 connection and starts the upload function needed to upload the
ladder logic program, however, after the upload function ends, there
is no data saved or even transmitted. Overall, these results provide
compelling evidence for answering Question Q-3 affirmatively.

6 DISCUSSION AND FUTURE WORK

Comparing HoneyPLC with Previous Approaches. Following
the comparison shown in Table 1, HoneyPLC provides significant
improvements over the current state-of-the-art of honeypots for
PLCs. First, HoneyPLC provides better covertness capabilities than
the ones provided by related works in the literature, as shown in the
experimental procedures summarized in Table 2. Moreover, as de-
tailed in Sec. 4.3, HoneyPLC provides advanced TCP/IP simulation
based on Honeyd, plus the careful simulation of different domain-
specific protocols. Whereas the simulation of various protocols is
shared by many approaches in the literature, only HoneyPLC and
SCADA HoneyNet [3] leverage the rich simulation features pro-
vided by the Honeyd framework. Second, the extensibility features
of HoneyPLC, discussed in Sec. 4.2, allow for the effective simula-
tion of different PLCs deployed in practice, as it was shown in the
experimental procedures detailed in Sec. 5.2. Such a feature is not
shared by any other approach in the literature, as shown in Table 1.
Only a few approaches provide limited extensibility features, but
those are mostly based on manually changing some configuration
settings for the PLCs they support. As shown in Sec. 4.2, the Hon-
eyPLC’s Profiler Tool supports the collection and configuration
settings for different real PLCs, which may allow for practitioners
to create and distribute PLC Profiles for HoneyPLC for many differ-
ent brands and models used in practice. Finally, HoneyPLC’s Ladder
Logic Capture feature is optimal for the understanding and analysis
of malicious programs tailored for PLCs, which is not provided by
any other related work, as shown in Table 2.

Limitations. Despite the innovative features of HoneyPLC, and
the promising evaluation results shown in Sec. 5, we identified the
following limitations to our approach. First, as shown in Table 1,

HoneyPLC does not provide support for modeling physical interac-
tions as depicted by PLCs in practice. To solve this, future versions
of HoneyPLC may be enhanced with a generic, general-purpose
framework that facilitates the collection and subsequent model-
ing of physical interactions that can further engage and deceive
attackers. Second, despite numerous attempts, we were unable to
test HoneyPLC against Stuxnet, shown in Sec. 2.3, up to the point
in which PLCs are injected with Ladder Logic code. This problem
was also encountered by seasoned partners in industry, as it was
revealed to us in private conversations. As an alternative, we strove
to replicate a similar code injection scenario as shown in Sec. 5.8.

Future Work. First, we plan to add support to other ICS specific
network protocols such as Modbus, which is widely implemented
by other approaches in the literature. Second, we plan to use Hon-
eyPLC as a basis for simulating rich ICS infrastructures completely
in software, modeling components like SCADA and other devices.
Current ICS are proprietary, closed, and composed of a plethora of
costly devices, which clearly complicates the effective development
and testing of new protection tools by researchers. Finally, we plan
to turn HoneyPLC into a comprehensive suite for malware anal-
ysis for ICS by incorporating Ladder Logic analysis tools such as
ICSREF [16], as well as other works such as PLCinject, featured in
Sec. 5.8.

7 CONCLUSIONS

Attacks targeting ICS are now more real than ever and their con-
sequences may be catastrophic. In this paper we have introduced
HoneyPLC, a convenient and flexible honeypot, which significantly
pushes the state-of-the-art of the field forward. Additionally, we
have provided experimental evidence that demonstrates that Hon-
eyPLC outperforms existing honeypots in the literature, achieving
a performance level comparable to real PLC devices. Finally, the
HoneyPLC advanced extensibility features may allow for practi-
tioners to create and openly distribute many new PLC Profiles for
a variety of PLCs used in practice, thus positioning HoneyPLC not
only as a helpful tool for preventing and deterring ongoing attacks,
but also as the starting point for designing and evaluating new
protection technologies for mission-critical cyber-physical systems
and infrastructure.
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