
HoneyPLC: A Next-Generation Honeypot
for Industrial Control Systems

Efrén López Morales
Arizona State University

edlopezm@asu.edu

Carlos Rubio-Medrano
Texas A&M University -

Corpus Christi
carlos.rubiomedrano@tamucc.edu

Adam Doupé
Arizona State University

doupe@asu.edu

Yan Shoshitaishvili
Arizona State University

yans@asu.edu

Ruoyu Wang
Arizona State University

fishw@asu.edu

Tiffany Bao
Arizona State University

tbao@asu.edu

Gail-Joon Ahn
Arizona State University

Samsung Research
gahn@asu.edu

ABSTRACT
Industrial Control Systems (ICS) provide management and control
capabilities for mission-critical utilities such as the nuclear, power,
water, and transportation grids. Within ICS, Programmable Logic
Controllers (PLCs) play a key role as they serve as a convenient
bridge between the cyber and the physical worlds, e.g., controlling
centrifuge machines in nuclear power plants. The critical roles that
ICS and PLCs play have made them the target of sophisticated
cyberattacks that are designed to disrupt their operation, which
creates both social unrest and financial losses. In this context, hon-
eypots have been shown to be highly valuable tools for collecting
real data, e.g., malware payload, to better understand the many
different methods and strategies that attackers use.

However, existing state-of-the-art honeypots for PLCs lack so-
phisticated service simulations that are required to obtain valuable
data. Worse, they cannot adapt while ICS malware keeps evolving,
and attack patterns become more sophisticated. To overcome these
shortcomings, we present HoneyPLC, a high-interaction, extensible,
and malware-collecting honeypot supporting a broad spectrum of
PLCs models and vendors. Results from our experiments show that
HoneyPLC exhibits a high level of camouflaging: it is identified
as real devices by multiple widely used reconnaissance tools, in-
cluding Nmap, Shodan’s Honeyscore, the Siemens Step7 Manager,
PLCinject, and PLCScan, with a high level of confidence. We de-
ployed HoneyPLC on Amazon AWS and recorded a large amount
of interesting interactions over the Internet, showing not only that
attackers are in fact targeting ICS systems, but also that Honey-
PLC can effectively engage and deceive them while collecting data
samples for future analysis.
ACM Reference Format:
Efrén López Morales, Carlos Rubio-Medrano, Adam Doupé, Yan Shoshi-
taishvili, Ruoyu Wang, Tiffany Bao, and Gail-Joon Ahn. 2020. HoneyPLC: A
Next-Generation Honeypot for Industrial Control Systems. In Proceedings of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CCS ’20, November 9–13, 2020, Virtual Event, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7089-9/20/11. . . $15.00
https://doi.org/10.1145/3372297.3423356

the 2020 ACM SIGSAC Conference on Computer and Communications Security
(CCS ’20), November 9–13, 2020, Virtual Event, USA. ACM, New York, NY,
USA, 13 pages. https://doi.org/10.1145/3372297.3423356

1 INTRODUCTION
Industrial Control Systems (ICS) are widely used by many indus-
tries including public utilities such as the power grid, water, and
telecommunications [37]. These utilities are integral to people’s
daily life, and any interruption to them may cause significant dam-
age and losses. The increasingly interconnected nature of modern
ICS makes them more vulnerable than ever to cyberattacks. For
example, a cyberattack that targets a power grid would potentially
lead to blackouts in a city or across an entire geographical region.
Regrettably, this proposition is no longer a fiction. The number
of attacks targeting ICS has been steadily increasing since the
infamous Stuxnet malware first showed the world that ICS net-
works are not secure [13]. Also, in 2015, a cyberattack targeting
the Ukrainian power grid successfully took down several of its dis-
tribution stations. The ensuing outages left approximately 225,000
people without access to electricity for several hours [11].

One of the key components of ICS networks are Programmable
Logic Controllers, better known as PLCs [37]. They control mission-
critical electrical hardware such as pumps or centrifuges, effectively
serving as a bridge between the cyber and the physical worlds. Be-
cause of their critical role, PLCs have been recently targeted by
cyberattacks, which attempt to disrupt their proper functioning in
an effort to affect their corresponding ICS as a whole. As an exam-
ple, PLCs were the primary target of the Stuxnet malware as they
controlled critical physical processes in a nuclear facility. To better
understand cyberattacks against ICS and PLCs, several honeypots
have been proposed [3, 9, 14, 15, 21, 40]. However, current honeypot
implementations for ICS fail to provide the necessary features to
capture data for most recent and sophisticated attack techniques.
For example, a common limitation exhibited by most of the existing
approaches in the literature is their low-interaction nature: these
approaches usually rely on basic and shallow simulations of net-
work protocols, which usually lack complex functionality that limit
the attack vectors and makes them easy to discover by attackers.
These shortcomings heavily restrict the value of the attack data
that can be gathered by these ICS honeypots.

Providing a solution to these issues comes with a set of unique
challenges. First, it is difficult to achieve meaningful, step-by-step

https://doi.org/10.1145/3372297.3423356
https://doi.org/10.1145/3372297.3423356

protocol simulation that can eventually result in high-level, deceiv-
ing interactions between honeypots and attackers. These inadequate
simulations complicate concealing the true nature of honeypots up
to the point accurate and valuable data, e.g., the actual malicious
ladder logic code itself can be retrieved from attackers for further
analysis. Second, several network protocols largely used in ICS,
e.g., S7comm [40], are proprietary, in the sense that no detailed
documentation on them is publicly available, which prevents an
effective understanding of the protocol, including hidden configu-
ration parameters as well as implicit, undocumented assumptions,
which can ultimately reveal the true nature of a honeypot to an
attacker. Moreover, existing PLCs used in practice vary in terms of
configuration settings, supported protocols, and the way they are
customized for different application domains. Creating a general
framework that can effectively support such heterogeneity of PLCs
devices, regardless of their manufacturing brand and model, with-
out requiring the edition of large and clumsy configuration files,
represents a non-trivial challenge.

To alleviate the aforementioned concerns targeting ICS world-
wide, and effectively tackle the research challenges just discussed,
this paper presents HoneyPLC: a high-interaction, extensible, and
malware-collecting honeypot modeling PLCs, which is specifically
crafted for ICS. HoneyPLC includes advanced simulations of the
most common network protocols found in PLCs, namely, the TCP/IP
Stack, S7comm, HTTP, and SNMP, addressing the challenges in-
troduced by inadequate simulations and protocol closeness as dis-
cussed before. As an example, our TCP/IP Stack simulation benefits
from the introduction of a novel technique called fingerprint revers-
ing, which allows for accurately modeling TCP, ICMP, and UDP
probes at runtime, providing an effective, customized response to
each interaction as initiated by an attacker, largely increasing the
level of engagement and subsequent deception. In addition, our
simulation of the S7comm protocol, which is core to PLC commu-
nications, provides a level of simulation that is able to trick even
proprietary tools such as the Siemens Step7 Manager [8]. Moreover,
HoneyPLC also provides enhanced extensibility features, allowing
for PLCs of different models and manufacturing brands to be effec-
tively simulated. Thus addressing the PLC heterogeneity challenge
just discussed. We have successfully tested this feature using five
real PLCs, allowing for HoneyPLC to currently support out-of-the-
box the Siemens S7-300, S7-1200, and S7-1500; the Allen-Bradley
MicroLogix 1100, and the ABB PM554-TP-ETH PLCs. HoneyPLC
also implements an advanced simulation of the internal memory
blocks featured by modern PLCs, allowing for the automated cap-
ture and storage of malicious ladder logic programs, which can be
later analyzed to reveal new attacking techniques.

The features just discussed are, to the best of our knowledge,
exclusive to HoneyPLC, and also significantly advance the state-of-
the-art for ICS honeypots. This positions HoneyPLC as a convenient
and flexible tool that can serve as a reliable basis for the analysis
and understanding of emerging threats and attacks, as well as the
subsequent development of protection techniques for ICS.

This paper makes the following contributions:

(1) We provide a summary of the limitations and shortcomings of
existing ICS Honeypots and discuss how they address (or not)

emerging malware threats, as well as new ICS technology, e.g.,
new PLC models and ICS network protocols.

(2) We present HoneyPLC, a high-interaction honeypot for PLCs,
which not only solves many of the limitations of related ap-
proaches, but also provides convenient support for further un-
derstanding and eventually defeating emerging threats for ICS.

(3) We introduce the HoneyPLC PLC Profiler Tool, which allows
for the effective simulation of many different PLCs regardless
of their model and manufacturer.

(4) Finally, we provide experimental evidence showing that Hon-
eyPLC is not only effective at engaging and deceiving state-of-
the-art tools for network reconnaissance, but also outperforms
existing honeypots in the literature, achieving a performance
level comparable to real PLC devices.
In an effort to further open and produce reproducible science,

HoneyPLC and all our experimental results are available online 1.

2 BACKGROUND AND RELATEDWORK
In this section, we state the background of PLCs (Sec. 2.1), network
reconnaissance tools Sec. (2.2), ICS malware (Sec. 2.3), and ICS
honeypots (Sec. 2.4).

2.1 Programmable Logic Controllers
A Programmable Logic Controller (PLC) is a small industrial com-
puter designed to perform logic functions based on input provided
by electrical hardware such as pumps, relays, mechanical timers,
switches, etc. PLCs have the capability of controlling complex indus-
trial processes, making them ubiquitous in ICS and SCADA environ-
ments [36]. Some popular PLC manufacturers include Siemens [34],
Allen-Bradley [6], andABB [5]. Internally, PLCs have programmable
memory blocks that store instructions to implement different func-
tions, for example, input and output control, counting, logic gates,
and arithmetic calculations.

2.2 Network Reconnaissance Tools
Nmap. Nmap or “Network Mapper” [22], is a popular open source
utility that is able to detect the operating system and services that
a particular device is running by sending raw IP packets over the
network. Once a given detection scan is completed, Nmap can
either report a single OS match or a list of potential OS guesses,
each guess with its own confidence percentage rate, in the range 0
to 100, where 0 denotes the complete absence of confidence, and
100 denotes a complete confidence on the projected guess result.

PLCScan. PLCScan [33] is a reconnaissance tool used to scan
PLC devices in a given network. PLCScan reveals PLCs that im-
plement the S7comm protocol over TCP port 102 or the Modbus
protocol over TCP port 502. It is written as a command line Python
script and lists PLC information including basic hardware, serial
number, name of the PLC, and firmware version.

Shodan. Shodan is a search engine and crawler [23] specifically
tailored for devices exposed across the Internet, e.g., webcams,
routers, ICS devices, among others. The Shodan Honeyscore (part
of the Shodan API [23])is a tool that checks whether a device is
a honeypot or not. Given an IP address, the Shodan Honeyscore

1https://github.com/sefcom/honeyplc.

https://github.com/sefcom/honeyplc

Table 1: Comparison of Existing PLC Honeypots in the Literature and HoneyPLC.

Keys: � = No Coverage;1/2 = Limited Coverage; = Optimal Coverage.

Approach/
Feature

Extensibility
TCP/IP Stack
Simulation

Out-of-the-Box
PLCs

ICS Network
Services

Ladder Logic
Capture

Physics
Interaction

Logging

Gaspot [39] � � 1/2 � � 1/2
SCADA

HoneyNet [3]
� 1/2 � �

Conpot [15] 1/2 � 1/2 � �
Digital Bond's
Honeynet [38]

� � 1/2 � �

DiPot [10] 1/2 � 1/2 � �
SHaPe [19] 1/2 � 1/2 1/2 � �
CryPLH [9] � 1/2 1/2 � � �

S7commTrace [40] 1/2 � 1/2 1/2 � �
Antonioli et al. [7] 1/2 1/2 1/2 � 1/2

HoneyPhy [21] 1/2 � 1/2 1/2 � 1/2 �

HoneyPLC �

Paper Sections
Addressing Feature

4.2,
5.2

4.3,
5.4,
5.5

4.2,
5.2

4.3,
5.7

4.4,
5.8

6 4.5

calculates the probability that the host is a honeypot, in a range
between 0.0 and 1.0, where 0.0 means that the host is de�nitively
a real system, and 1.0 means the host is de�nitively a honeypot.
According to Shodan's creator, the following criteria is used for
calculating Honeyscores [24]: (1) too many open network ports;
(2) a service not matching the environment, for example, an ICS
device running on AWS EC2; (3) known default settings of known
honeypots; (4) if a host was initially classi�ed as a honeypot, then
it is highly likely that it remains a honeypot today, even though its
con�guration may look real; (5) a Machine Learning classi�cation
algorithm (not disclosed); and, �nally, (6) the same con�guration
being used across multiple honeypots.

2.3 Exemplary ICS Malware
Stuxnet. The �rst ever-documented cyber-warfare weapon, Stuxnet,
was a turning point in the history of Cybersecurity [12], targeting
PLC models 315 and 417 made by Siemens to modify their inner lad-
der logic code while concealing itself from ICS administrators [20].
The malware would �rst spread itself via USB sticks and the local
network, looking for vulnerable Windows workstations. Later, it
would proceed to infect the Step7 and WinCC Siemens proprietary
software by hijacking a Dynamic-Link Library (DLL) �le used to
communicate with the PLCs. Finally, the malicious ladder logic pay-
load would be dropped only on the aforementioned models based
on speci�c manufacturer numbers and memory blocks.

Kemuri Incident. In 2016, attackers were able to gain access
to the network of an undisclosed water supply company identi�ed
by the aliasKemuri[13], targeting hundreds of ICS devices such as
valves, back-o�ce documents, and PLCs that managed the chemical
processes for water treatment. The attackers successfully altered

the amount of chemical and disrupted the water supply, causing
considerable damage and putting human lives at risk.

Crashoverride. Otherwise known as Industroyer [35], CRASH-
OVERRIDE is a sophisticated malware designed to disrupt ICS
networks used in electrical substations. It shows in-depth knowl-
edge of ICS protocols used in the electrical industry that would
only be possible with access to specialized industrial equipment.
CRASHOVERRIDE dealt physical damage by opening circuit break-
ers and keeping them open even if the grid operators tried to close
them back to restore the system. It is believed to have been the
cause of the power outage in Ukraine in December of 2016 [13].

2.4 Honeypots for ICS
Honeypots are computer systems that purposefully expose a set
of vulnerabilities and services that can be probed, analyzed and
ultimately exploited by an attacker [28], allowing for all possible in-
teraction data to be monitored, logged and stored for future analysis.
A summary of existing ICS honeypots is shown in Table 1.

Low-Interaction Honeypots. Low-interaction honeypots o�er
the least amount of functionality to an attacker [25,28]. The services
exposed by this kind of honeypot are usually implemented using
simple scripts and �nite state machines. Because of their limited
interaction, attackers may not be able to complete their attack steps
or may even realize that their target is a fake system. On the other
hand, low-interaction honeypots cannot be fully compromised as
they are not real systems, which greatly reduces maintenance costs
and time invested in con�guration and deployment. Gaspot [39] is a
low-interaction honeypot written as a Python script that simulates
a gas tank gauge. It can be modi�ed to change temperature, tank
name, and volume. The SCADA HoneyNet Project was the �rst
honeypot implementation speci�cally built for ICS [3, 38]. This

project was aimed at developing a software framework capable
of simulating ICS devices like PLCs using Python scripts. Conpot
[15] is also a low-interaction ICS honeypot implementation that
simulates a Siemens S7-200 PLC, and can be manually modi�ed to
simulate other PLCs by editing an XML �le.

High-Interaction Honeypots . High-interaction honeypots lie
on the other side of the spectrum, as they strive to o�er the same
level of interaction as a real system [25]. CryPLH is a high-interaction
honeypot that simulates a S7-300 Siemens PLC [9], and includes
HTTP, HTTPS, S7comm and SNMP services running on a Linux
host that has been modi�ed to accept connections on speci�c ports.
The S7comm protocol is simulated by showing an incorrect pass-
word response and the TCP/IP Stack is simulated via the Linux
kernel. S7commTrace [40] provides a high-interaction simulation
of the S7comm protocol and supports the Siemens S7-300 PLC. Anto-
nioli et al. [7] proposed a high-interaction honeypot that leverages
the MiniCPS framework to simulate the Ethernet/IP protocol and a
generic PLC. HoneyPhy [21] provides a novel physics-aware model
to simulate a generic analog thermostat and the DNP3 protocol.

3 LIMITATIONS OF CURRENT HONEYPOTS
Despite the bene�ts of honeypots previously discussed, current
honeypots for ICS in the literature, shown in Table 1, fail to pro-
vide the necessary features to capture data on the latest and most
sophisticated attacks, exhibiting the following limitations:

L-1 Limited Extensibility. A common limitation in the current
literature is the narrow extensibility support for the many dif-
ferent PLC devices and network services that are used in ICS in
practice and have already been targeted by recent attacks. As
an example, Stuxnet and the Kemuri attack targeted di�erent
kinds of PLCs, whereas CRASHOVERRIDE targeted di�erent
network services, as it was discussed in Sec. 2. Following Table 1,
several approaches in the literature provide limited extensibility
capabilities, which mostly include the manual edition of XML
�les to support additional PLCs. This process, besides being
tedious and time-consuming, may be highly error-prone, and
may ultimately reveal the true nature of a honeypot to attack-
ers if implemented incorrectly. This is aggravated by the fact
most of the approaches in the literature support only one or
two PLC modelsout-of-the-box, as it is shown in Table 3. As
we will discuss in Sec. 4.2, the HoneyPLC Pro�ler Tool can be
customized to support PLCs of di�erent brands and models.
As an example, HoneyPLC currenlty providesout-of-the-box
support for 5 PLCs of three major brands, as detailed in Sec. 5.2.

L-2 Limited Interaction. Current approaches mostly provide lim-
ited functionality when it comes to TCP/IP Stack simulations,
as well as native ICS network protocols, as described in Sec. 2.
This is a serious limitation that stops current approaches from
extracting value from adversarial interactions and malware. As
an example, CRASHOVERRIDE, leveraged advanced ICS proto-
col features that are not supported by low-interaction honey-
pots. This would ultimately result in the loss of highly valuable
data. Even high-interaction honeypots fail to provide advanced
enough protocol simulations. For example, CryPLH [9] imple-
ments the S7comm protocol using a Python script that only

simulates an incorrect password screen. HoneyPLC solves this
limitation by provided extended support for various networks
protocols implemented by means of its dedicated PLC Pro�les,
as we will discuss in Sec. 4.3, and evaluate through experiments
in Sec. 5.4�5.7.

L-3 Limited Covert Operation. The moment an attacker discov-
ers the true nature of a honeypot, it is game over, as the attacker
might stop interacting with it altogether and stop revealing her
attack methods. Therefore, honeypots should aim to fool widely
used network reconnaissance tools, e.g., Nmap, introduced in
Sec. 2.2, to maintain their covert operation. In such regard, the
SCADA HoneyNet Project [3] is the only approach in the liter-
ature that provides a convincing deception to attackers. Also,
Linux Kernel simulations, implemented by several approaches
in the literature, e.g., CryPLH, fail to deceive Nmap. Other work
fails to attempt or even mention such a crucial feature. To over-
come this limitation, HoneyPLC provides advanced network
simulations intended to deceive reconnaissance tools such as
Nmap, as we demonstrate in Sec. 4.3.

L-4 No Malware Collection. The highly specialized nature of ICS
devices calls for better analysis, dissection, and understanding
techniques speci�cally tailored for emerging malware trends.
In such regard, honeypots are a great tool to collect and ana-
lyze malware [29]. However, as shown in Table 1, there exist
no honeypots for ICS in the literature that can provide such
functionality, which has serious consequences for the security
of ICS in the presence of recent malware-injection attacks. For
instance, Stuxnet injected malicious ladder logic code to the tar-
geted PLCs. To solve this, HoneyPLC provides a novel feature
to capture ladder logic, as described in Sec. 4.4 and Sec. 5.8.

4 HONEYPLC: A CONVENIENT HIGH-
INTERACTION HONEYPOT FOR PLCS

Having described the limitations of existing approaches, we now
present HoneyPLC, an extensible, high-interaction, and malware-
collecting honeypot for ICS. HoneyPLC provides advanced protocol
simulations, e.g., TCP/IP, S7comm, HTTP, and SNMP, achieving an
interaction level comparable torealPLCs, ultimately introducing
low-to-moderate levels of risk as well as low maintenance costs. We
start by providing an illustrative use case scenario, which exempli-
�es how the di�erent inner modules and components of HoneyPLC
interact with an attacker at runtime when an attempt to compro-
mise a PLC is made. Later, we elaborate on how HoneyPLC solves
each of the limitations highlighted in Sec. 3.

4.1 Illustrative Use Case Scenario
Initial Setup. As it will be further discussed in Sec. 4.2, HoneyPLC
can be extended to simulate PLCs of di�erent models, communica-
tion protocols, and/or manufacturer brands. With that in mind, the
very �rst step when using HoneyPLC includes choosing the PLC
Pro�le featuring the desired real-life PLC that will be exposed to
attackers as a honeypot. This process is shown in Fig. 1 (Step 1).
PLC Pro�les can be chosen from a dedicated repository included as

a part of HoneyPLC. For the rest of this case scenario, let us assume
the S7-1200 model is selected.

Fingerprinting. Once HoneyPLC is deployed, an attacker may
try to �ngerprint it using a reconnaissance tool such as Nmap or
PLCScan (Fig. 1 (Step 2)). When initial contact is established, all the
TCP/IP requests will be handled by the HoneyPLC's Personality
Engine, which in turn, is based on features provided by the Hon-
eyd [2] tool, as it will be further discussed in Sec. 4.3. (Fig. 1 (Step
3)). Since the S7-1200 PLC model was selected in the beginning, the
Personality Engine will use the appropriate �ngerprint contained
within the PLC Pro�le to reply to communications started by Nmap.
At this point, Nmap may con�rm to the attacker that she is dealing
with a PLC and not a honeypot, as we show in Sec. 5.

Reconnaissance.In a subsequent step, an attacker might try
to initiate an S7comm connection to check what PLC memory
blocks are available. As mentioned in Sec. 2, such a process is
crucial when attempting to modify the inner ladder logic code of a
PLC. The connection is �rst handled by the HoneyPLC's Network
Services module, and later forwarded to a dedicated S7comm server.
(Fig. 1 (Step 4)). The S7comm server then replies with the requested
information and the Integration Framework forwards the replies to
the attacker. In the meantime, the S7comm server is logging all the
interactions, including the attacker's source IP address and memory
block requests made to the PLC.

Code Injection. At this point, when the attacker identi�es a
PLC memory block suitable for injection, he/she uses an S7comm
application like PLCinject [4] to load ladder logic code into the PLC,
e�ectively overwriting any pre-existing code and introducing a
custom-made malicious payload. (Fig. 1 (Step 5)). As a result, the
HoneyPLC's S7comm server will write the code into the dedicated
HoneyPLC repository, which is managed by the Interaction Data
module. (Fig. 1 (Steps 6 and 7)).

After this case scenario has been completed, HoneyPLC may
have been able to collect crucial information about the attack inside
its logging infrastructure: (1) the public IP address of the attacker,
(2) the speci�c PLC memory blocks the attacker was targeting, and
best of all, the critical piece, (3) the ladder logic program he/she has
injected. Later on, such a malware sample can be analyzed at the
byte level to get a better understanding of the malicious instructions
that the attacker wanted the PLC to execute. In Sec. 6, we elaborate
on this idea as a part of our future work.

4.2 Supporting PLC Extensibility
PLC Pro�les. The PLC Pro�le Repository, shown in Fig. 1 (Step 1),
is a collection of PLC Pro�les that hold all the required data to
simulate a given PLC. It communicates with the Integration Frame-
work and Network Services modules to customize the PLC that
HoneyPLC is simulating at any given time and addresses the lack
of extensibility discussed in Limitation L-1. In turn, a PLC Pro�le is
a collection of three discrete datasets, which allow HoneyPLC to
simulate a particular PLC device by means of highly customized sim-
ulations of network interactions, as it will be discussed in Sec. 4.3.

� SNMP MIB.A Management Information Base (MIB) is an stan-
dard used by SNMP agents. Because most PLC devices imple-
ment a simple SNMP agent, a custom MIB is needed for Honey-
PLC to provide a realistic SNMP simulation.

Figure 1: The Architecture of HoneyPLC. Before deploy-
ment, a PLC Pro�le is selected from a repository (1). Later,
at runtime, an attacker may initiate contact via a dedicated
protocol, e.g., S7comm (2). Communications are then pro-
cessed by the Personality Engine (3), later forwarded to the
S7comm Server (5), and are eventually logged by the Inter-
action Data Framework (6). Finally, all code injected by the
attacker is captured within the repository module (7).

� Nmap Fingerprint.A plain text �le with the Nmap �ngerprint
to e�ectively simulate the TCP/IP Stack of a particular PLC
device. As it will be detailed later in this Section, this �ngerprint
allows HoneyPLC to e�ectively engage and deceive well-known
reconnaissance tools such as Nmap.

� Management Website.Some PLC devices provide a light web-
server with a splash screen and some con�guration options.
Because of this, a PLC Pro�le includes a copy of the such web-
site, including, but not limited to, image, HTML and CSS �les.

PLC Pro�ler Tool. The HoneyPLC Pro�ler Tool automates the
creation of new HoneyPLC Pro�les. It interfaces with three di�erent
applications: Nmap, (Sec. 2.2), snmpwalk [30], and wget [31]. To
obtain the pro�le for a target PLC, the HoneyPLC Pro�ler requires
the IP address of the PLC device as the only input. Then, the Pro�ler
runs a series of queries to obtain the three discrete sets of data from
the target PLC described before: an SNMP MIB, a website directory,
and an Nmap �ngerprint. First, snmpwalk is used for reading all
the available Object IDs (OIDs) from the public community string,
creating an identical MIB to the one used by the PLC. OIDs may
include, among other important con�guration settings, the unique
identi�er of the PLC, as well as its base IP address. Second, Nmap's
OS detection is used to get the TCP/IP stack �ngerprint of the target
PLC, in a process that includes scanning all well-known TCP and
UDP ports. This �ngerprint will be later leveraged by HoneyPLC's
Integration Framework to provide meaningful TCP/IP interactions

Figure 2: The HoneyPLC Personality Engine: First, a PLC
Pro�le is selected from the repository, including its Nmap
Fingerprint (1). When an attacker tries to �ngerprint Hon-
eyPLC using Nmap, such a tool will send a series of Probes
to determine the OS or Device (2). HoneyPLC will then re-
ply with appropriately crafted responses that simulate a real
PLC, thus e�ectively deceiving Nmap and the attacker (3).

as a response to requests initiated by an attacker. Third, wget is used
to download a complete copy of the splash screen or administration
website, if any. Finally, the HoneyPLC Pro�ler will create a custom
directory that can be used by HoneyPLC, inside its dedicated PLC
Pro�le Repository, shown in Fig. 1 (1), to simulate the target PLC.

4.3 Supporting Operational Covertness
TCP/IP Simulation. Within HoneyPLC's Integration Framework,
depicted in Fig. 1, a sophisticated TCP/IP Stack simulation is im-
plemented by leveraging Honeyd [28], a popular framework for
honeypot simulation, as well as Nmap, discussed in Sec. 2.2. The pro-
cess is depicted in Fig. 2. Initially, when a new PLC is to be modeled
by HoneyPLC, Nmap is used to generate a detailed TCP/IP Stack
�ngerprint for it. Next, such a �ngerprint is integrated with the Hon-
eyd �ngerprint database, by appending it to Honeyd's nmap-os-db
text �le. Later, at runtime, when a tool like Nmap tries to �ngerprint
a HoneyPLC host, HoneyPLC Personality Engine, leveraging Hon-
eyd, will respond with the appropriate �ngerprint information. To
achieve this, the Engine reads a particular �ngerprint from Nmap's
database andreversesit, which means that when Honeyd simulates
a particular device, it introduces its IP/TCP Stack peculiarities: TCP
SYN packet �ags, IMCP packet �ags, and timestamps.

The generation of accurate Nmap �ngerprints imposed a variety
of challenges. First, PLC devices of di�erent manufacturers and mod-
els use di�erent UDP and TCP ports that are not standard, or may
not be properly de�ned within the device manuals, e.g., port 2222
for the MicroLogix 1100 PLC. The lack of heterogeneity required us
to perform a manual inspection, which was time-consuming and
error-prone. Second, we analyzed the Nmap reports that contain
the �ngerprint results and modi�ed the format to be compatible
with the Honeyd �ngerprint database. Additionally, the creation
of accurate Honeyd templates brought its own set of challenges.
For HoneyPLC to provide enhanced interaction capabilities, which
can engage attackers for extended periods of time (as we further

Figure 3: The HoneyPLC SNMP and the Webserver Agents.
The MIB database as well as the Website HTTP �les, ob-
tained from a PLC Pro�le, are �rst loaded by each agent (1).
Then, the Attacker may use SNMPWalk as well as an HTTTP
Client to established connection with HoneyPLC (2). Later,
each agent with reply to each request using the information
obtained from the PLC Pro�le (3).

describe in Sec. 4.3), we signi�cantly improved the standard sim-
ulation scripts included within Honeyd. Speci�cally, we used the
subsystem virtualization feature provided by Honeyd: this feature
facilitates the integration of the di�erent HoneyPLC components.

S7comm Server.Within HoneyPLC's Network Services Mod-
ule, depicted in Fig. 1, the S7comm server provides a sophisticated
simulation of the Siemens proprietary protocol. It simulates a real
Siemens PLC and exposes several memory blocks via TCP port 102.
At the time of writing this paper, Siemens had not released the
speci�cations of S7comm protocol and the information that is avail-
able has been collected by third parties like the Snap7 project [27]
and the Wireshark Wiki [1]. We leveraged the Snap7 framework
[27, 32] to write an S7comm server application in C++. We modi�ed
and recompiled the source code of the main Snap7 library to add
our own features. These include logging the S7comm interactions,
ladder logic capture, and PLC �rmware speci�cations for all three
Siemens PLC models. For example, CPU model, serial number, PLC
name label, copyright among others.

SNMP Server.Within HoneyPLC's Network Services Module,
the SNMP Agent implements an advanced simulation of the SNMP
protocol along with believable MIB data, e�ectively allowing Hon-
eyPLC to reply to any external SNMP server query. SNMP is com-
monly used in practice to monitor network connected devices and
listens to requests over UDP port 161. SincerealPLCs do implement
SNMP agents, implementing this sub-component adds to the de-
ception capabilities of HoneyPLC. Our simulation process, shown
in Fig. 3 (top), can be described as follows: In practice, a typical
SNMP setup includes aManageras well as anAgentmodule. The
SNMP Manager continually queries the Agent for up-to-date data.
A SNMP Agent exposes a set of data known as Management In-
formation base or MIB. In order to simulate the SNMP protocol,
we use the light Python applicationsnmpsim, which simulates a
SNMP Agent based on real time or archived MIB data. When a
SNMP request is received by HoneyPLC, the SNMP Agent replies
with an OID as a real PLC would do.

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Programmable Logic Controllers
	2.2 Network Reconnaissance Tools
	2.3 Exemplary ICS Malware
	2.4 Honeypots for ICS

	3 Limitations of Current Honeypots
	4 HoneyPLC: A Convenient High- Interaction Honeypot For PLCs
	4.1 Illustrative Use Case Scenario
	4.2 Supporting PLC Extensibility
	4.3 Supporting Operational Covertness
	4.4 Ladder Logic Collection
	4.5 Implementing Record Keeping via Logging

	5 Evaluation
	5.1 Experimental Questions
	5.2 Case Study: Profiling Siemens PLCs
	5.3 Case Study: Allen-Bradley and ABB PLCs
	5.4 Resilience to Reconnaissance Experiment
	5.5 Shodan's Honeyscore Experiment
	5.6 Step7 Manager Experiment
	5.7 Internet Interaction Experiment
	5.8 Ladder Logic Capture Experiment

	6 Discussion and Future Work
	7 Conclusions
	References

