
HoneySat: A Network-based
Satellite Honeypot Framework

Efrén López-Morales‡*, Ulysse Planta†*, Gabriele Marra†, Carlos González§††, Jacob Hopkins∥,
Majid Garoosi†, Elı́as Obreque¶, Carlos Rubio-Medrano∥, Ali Abbasi†

*Equal contribution, joint first authors
‡New Mexico State University †CISPA Helmholtz Center for Information Security

∥Texas A&M University–Corpus Christi §Universidad de Santiago de Chile
¶Universidad de Chile ††German Aerospace Center (DLR), Braunschweig, Germany

Abstract—Satellites are the backbone of mission-critical ser-
vices that enable our modern society to function, for example,
GPS. For years, satellites were assumed to be secure because of
their indecipherable architectures and the reliance on security
by obscurity. However, technological advancements have made
these assumptions obsolete, paving the way for potential attacks.
Unfortunately, there is no way to collect data on satellite
adversarial techniques, hindering the generation of intelligence
that leads to the development of countermeasures.

In this paper, we present HoneySat, the first high-interaction
satellite honeypot framework, capable of convincingly simulating
a real-world CubeSat, a type of Small Satellite (SmallSat).
To provide evidence of HoneySat’s effectiveness, we surveyed
SmallSat operators and deployed HoneySat over the Internet.

Our results show that 90% of satellite operators agreed that
HoneySat provides a realistic simulation. Additionally, Hon-
eySat successfully deceived adversaries in the wild and collected
22 real-world adversarial interactions. Finally, we performed
a hardware-in-the-loop operation where HoneySat successfully
communicated with an in-orbit, operational SmallSat mission.

I. INTRODUCTION

Satellites are complex devices designed to withstand outer
space conditions. They serve multiple purposes or types of
missions that include position and navigation, e.g., the Global
Positioning System (GPS) constellation [1]. In addition, space-
craft can range from being as massive as thousands of
kilograms, such as the International Space Station (ISS), to
much smaller one-kilogram CubeSats [2]. As a result, the
software and hardware components that make up a specific
spacecraft vary greatly. A cyberattack on a satellite or satellite
constellation (group of satellites) could have disastrous conse-
quences on a global scale, which is difficult to comprehend.
Such an attack could lead to the cessation of air traffic and
widespread communication blackouts [3]. It could also cause
food shortages and the freezing of financial transactions [4].
Furthermore, such an attack could exacerbate the Kessler Syn-
drome [5], a scenario in which collisions between satellites and

debris in orbit create a cascade effect, generating even more
debris, jeopardizing future satellite launches and operations.

In this increasingly vulnerable environment, the probability
of a successful satellite cyberattack continues to rise. This is
driven by three key trends [3]: first, satellite deployments have
increased at an unprecedented pace. For instance, while an
average of 82 launches took place between 2008 and 2017, as
many as 197 launches occurred in 2023 alone, each typically
carrying multiple satellites [6]. Second, ground station technol-
ogy has become significantly more affordable (and sometimes
open source), greatly lowering the communication barrier with
satellites [7]. Thus, a broader range of malicious actors can
now communicate with satellites. Third, satellite engineers
and operators continue to rely on protocol obscurity practices,
such as hiding specialized knowledge about the transmission
protocol implemented on satellites [8].

Although satellite security research has gained increased
attention [8], [9], the relationship between outer space and
cyberspace remains poorly understood [10]. Although the
volume of reported cyber incidents in the space sector has
grown, these reports rarely provide sufficient detail [4]. As
a result, the security community has limited visibility into
adversarial activity aimed at space infrastructure.

A honeypot’s ability to collect real-world cyberattack data
makes it an ideal solution to this problem [11]. A honeypot is
a decoy computer system intended to lure and entice malicious
actors to interact with it [12]; all the while, the honeypot logs
all interactions. These logs can be analyzed to discover Tactics
Techniques and Procedures (TTPs).

Since the release of the first honeypot, the Deception
Toolkit, in 1997 [13], a wide range of honeypots with ever-
increasing capabilities have been introduced. These honeypots
are used by universities, companies, and nation-states world-
wide [14], [15], [16], [17], [18]. Honeypots are also used
to deter malicious actors from attacking different types of
systems, from industrial control systems [18] to social media
platforms [19]. However, as of the time of writing, there is no
space-sector specific honeypot in the literature.

In this paper, we design, implement, and evaluate the
first satellite honeypot, HoneySat, to attract and analyze ad-
versaries who attack space infrastructures over the Internet,
a commonly observed threat vector [20], [21], [22], [23].

Network and Distributed System Security (NDSS) Symposium 2026
23-27 February 2026, San Diego, CA, USA
ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.240537
www.ndss-symposium.org

HoneySat is a modular, high-interaction honeypot framework
that realistically simulates a complete satellite system (ground
infrastructure and satellite). Specifically, HoneySat simulates
Small Satellites or SmallSats, which are spacecraft with a mass
of less than 180 kilograms [24]. CubeSats, for example, are
SmallSats. Additionally, as part of HoneySat, we developed
the Satellite Simulator, a Python project to provide generic
simulation functionality for users to populate satellite honey-
pots with believable data.

We leveraged our framework to create honeypots of real-
world CubeSat missions. Our results, backed by our survey of
satellite operators, show that HoneySat’s simulation is highly
realistic. Our framework simulates an entire satellite mission,
provides realistic telemetry, and supports real telecommands.

Finally, we collaborated with an aerospace company to per-
form a hardware-in-the-loop experiment where HoneySat suc-
cessfully communicated with an in-orbit, operational SmallSat.

In summary, this paper makes the following contributions:
• We introduce HoneySat, a novel, high-interaction, exten-

sible honeypot framework for small satellites (Sec. IV).
• We present the Satellite Simulator, a library that simulates

the physical processes, sensors, and subsystems necessary
for a realistic satellite honeypot (Sec. V).

• We demonstrate HoneySat’s high level of realism through
a hands-on survey where 10 experienced satellite opera-
tors interacted with HoneySat in real time (Sec. VI-C).

• We show HoneySat’s extensibility features by integrating
two real-world satellite flight software and integrating
HoneySat into a hardware-in-the-loop operation allowing
our honeypot to communicate with an in-orbit operational
SmallSat (Sec. VI-E and Sec. VI-F).

In the spirit of open and reproducible science, HoneySat’s
source code and experimental results are available online1,2.

II. BACKGROUND

This section lays out key background concepts that are
relevant to satellite honeypots. For honeypots: a description
of the different existing types (Sec. II-A), as well as the
current state-of-the-art (Sec. II-B). For satellites: their oper-
ation (Sec. II-C), architecture (Sec. II-D), existing protocol
ecosystems (Sec. II-E), and tactics, techniques, and procedures
(TTPs) (Sec. II-F).

A. Types of Honeypots

Honeypots are categorized by interaction levels according
to the interaction opportunities they provide. The two main
types of honeypots are low-interaction and high-interaction.

Low-Interaction Honeypots. These honeypots offer mini-
mal interaction, simulating real systems through scripts. They
are easy to setup and maintain, and have a reduced risk of
adversarial takeover. However, they provide limited interac-
tion opportunities, which limits the data they provide. Some
examples include Conpot [25] and Honeyd [26].

1https://doi.org/10.5281/zenodo.17871431
2https://github.com/HoneySat

TABLE I
COMPARISON OF EXISTING HONEYPOTS AND HONEYSAT.

Keys: = Supported; × = Not Supported.

Honeypot /
Feature

Interaction
Level

Included
Protocols Physics Sims Extensibility

Conpot [25] Low 9 0
HoneyPLC[18] High 3 0
ICSPot [33] High 4 1 ×
HoneyICS[31] High 2 1
HoneyDrone [32] Medium 4 1 ×
HoneySat High 4 6

Addressed
in Section

IV-D,
IV-C

IV-C,
V-B1

IV-D,
V-A

VI-E
VI-F

High-Interaction Honeypots. These honeypots offer exten-
sive interaction opportunities via emulation or simulation [26].
Their main advantage is providing adversaries with almost
limitless interactions. However, they pose a high takeover
risk [27]. Examples include Cowrie [28] and HoneyPLC [18].

B. Honeypot’s State of the Art

The literature on honeypots includes hundreds of implemen-
tations that simulate a diverse set of systems [29], [30]. From
implementations that simulate a host’s TCP/IP stack, such as
Honeyd [26], to modern approaches that integrate social media
applications, such as HoneyTweet [19]. In the absence of a
satellite honeypot, we examine the approaches most related
to satellites: Industrial Control Systems (ICS) and Unmanned
Aerial Vehicles (UAV), summarized in Table I.

Satellite systems like ICS must be aware of some physical
process, e.g., the sun’s position, via sensors to acquire data
about the physical world. ICS honeypots, such as Honey-
ICS [31], simulate these physical processes. In addition to
ICS, UAV honeypots such as HoneyDrone [32] achieve this
via simulations, and recreate attack scenarios.

C. Anatomy of a Satellite Mission

We now describe the components of a satellite mission.
Due to satellite missions’ complexity and diversity, we explain
each component and match it with one of the numbers in
Fig. 1. Every satellite mission includes the ground segment
from which satellite operators control the satellite and the
space segment which includes the satellite itself.

Ground Segment 1 . The Ground Segment (GS) covers
the terrestrial infrastructure required for a successful satellite
operation. It consists of a ground station, responsible for
exchanging data with the spacecraft, the computational and
network infrastructure required for communication, and the
systems to operate the satellites, e.g., servers [8]. The GS
includes the Ground Segment Software (GSS) that helps
operators schedule and send commands and visualize data.

Space Segment 2 . The space segment comprises a satellite
or a constellation of satellites. A satellite is launched into orbit
and then establishes communications with the ground segment.
During regular operations, satellites may communicate through
one or multiple ground stations [8].

2

Platform

Space Segment

Ground Segment

Payload

TC TM

Mission Operations Center Remote Location
1

2

3 4

6 7

5

8 9

Fig. 1. The components commonly found in a satellite mission.

Telecommands (TC) 3 and Telemetry (TM) 4 . The
basic data flow between the space and ground segments are TC
and TM [34]. TM is the data the satellite sends to the ground
station which may contain the satellite’s status or payload
data [34]. TCs are used to operate the satellite and are trans-
mitted and encapsulated in a space protocol (see Sec. II-E).
The design and implementation of TCs varies depending on
the satellite mission. From a security perspective, TCs are
particularly important as an attacker that can send valid TCs
to a satellite can fully take over the mission [8].

Orbital Pass 5 . A satellite and its ground station can com-
municate only during an orbital pass. An orbital pass, or simply
a pass, is when the satellite rises above a ground station’s
horizon and becomes available for communication. A pass’s
duration and timing depend on the satellite’s orbit characteris-
tics and any obstructing objects, e.g., mountains [35]. Passes
can be predicted using two-line element (TLE) data [36].

Satellite Mission Operations 6 . Satellite mission oper-
ations vary widely depending on the owning organization’s
budget, and technology [37]. Nevertheless, they share some
commonalities, which we now describe.

A mission’s operation involves a team of operators that use
ground segment software (GSS) to operate a satellite(s) and
ensure the mission’s success [38]. Operations are carried out
in a Mission Operations Center (MOC), where operators sit
at their workstations to manage TCs sent to the satellite(s).
Operators may also remotely operate satellites 7 by connect-
ing to the ground segment using tools such as VNC (Virtual
Network Computing) [7].

Satellite operations include two main activities: satellite
tracking and TC generation and scheduling. Satellite tracking
calculates the satellite’s position in orbit and controls the
ground station’s tracking antenna to establish communication
between the ground and space segments. TC generation and
scheduling crafts commands to be sent to the satellite to
perform different functions, e.g., download payload data.

Ground (Segment) Software (GSS). GSS allows operators
to carry out the mission’s routine operations. GSS are very
diverse. Some satellite missions develop their own GSS while

others use open-source [39] or proprietary GSS [40]. There
are two main types of GSS: Mission Control Software (MCS)
and Ground Station Control Software (GSCS).

Mission control software 8 manages TCs and scripts to
be sent to the satellite and display TM. For example, ESA’s
SCOS-2000 is an MCS that provides generic functionality that
can be customized for a specific mission operation [41]. Some
missions develop their own MCS. For example, the SUCHAI
mission developed their own MCS application [39].

Ground station control software (GSCS) 9 helps satellite
operators track and visualize the satellite’s orbit and provide
information about each satellite’s pass. For example, Gpredict
is a popular open-source GSCS that performs real-time satel-
lite tracking and orbit prediction [42].

D. Satellite Architecture

Satellite architectures are varied and complex [43]; however,
here we describe the most common terminology depicted in
Fig. 1’s space segment 2 .

When referring to satellite architecture there is a distinction
between the platform that facilitates the successful operation of
the satellite’s activities and the payload. The platform under-
pins the payload that fulfills the mission’s purpose. Payloads
differ depending on the satellite’s mission and can range from
measurement instruments to communications systems.

Platform: The platform is composed of custom-designed or
off-the-shelf subsystems necessary for critical satellite opera-
tions. These include the Attitude Determination and Control
System (ADCS) to maintain the satellite’s orientation (i.e.
attitude); the Electrical Power Subsystem (EPS) for manag-
ing power generation and distribution; the Communication
Subsystem (COMM) and the Command and Data Handling
(C&DH) subsystems to facilitate communications for receiv-
ing TC and sending TM.

These subsystems are controlled via TCs sent to the satellite.
TCs may be interpreted by a central C&DH System or merely
forwarded to the recipient subsystem [44]. This managerial
duty is handled by the Flight Software (FS) running on an
embedded system, for example, NASA’s Core Flight System
(cFS) [45]. Attackers aim to gain the ability to send TCs to the
flight software as this may grant control over all subsystems.

Payload. The payload is the equipment that a satellite
employs to fulfill its mission. Due to satellites’ varied mis-
sions, payloads are heavily customized [46]. For example, if a
satellite’s mission is remote sensing, its payload may include
an infrared camera [47].

E. Small Satellite Protocol Ecosystems

SmallSat missions can often be categorized by the adoption
of protocols and their corresponding philosophies. Currently,
there are two major protocol ecosystems which SmallSat
missions can adopt: CSP and CCSDS.

Cubesat Space Protocol. The Cubesat Space Protocol
(CSP) family of protocols is a one-stop solution for SmallSat
missions [48]. CSP is implemented as an open-source C library
called libCSP [48] and follows the TCP/IP model, including

3

transport and routing protocols and multiple layer 2 interfaces
such as I2C (Inter-Integrated Circuit), and ZeroMQ (ZMQ) for
transmission on TCP/IP networks [49].

In the context of a satellite mission, CSP connects the
ground segment and satellite subsystems as part of a CSP
network where each subsystem is identified as a node. Sending
a TC is as simple as sending a CSP packet with the address
of the corresponding subsystem node.

CCSDS Space Communication Protocols. The Consul-
tative Committee for Space Data Systems (CCSDS) Space
Communication is a set of standardized protocols used for
different purposes in space communications [50]. A relevant
CCSDS protocol for SmallSat TM and TC is the Space Packet
protocol. This protocol is used in combination with the ECSS
Packet Utilization Standard (PUS) [51] to define how TCs and
TM are encoded and transported. PUS defines services (and
thus sets of TC/TM) for functionality that satellite missions
require, including large data transfer or event reporting [50].

F. Space Systems’ Tactics, Techniques and Procedures (TTPs)

Tactics, Techniques, and Procedures (TTPs) describe a ma-
licious actor’s behavior in a structured scheme to understand
how they might execute an attack [52], [53]. The SPACE-
SHIELD matrix [54] is a framework used to standardize space
systems’ TTPs, for example, ground segment compromise.

III. THREAT MODEL

Following Fig. 2, we assume that an adversary willing
to compromise a satellite can only interact with the space
segment simulation by sending TCs from the ground seg-
ment first. To gain initial access to the ground segment, an
adversary needs to connect via one of the exposed network
protocols discussed in Sec. II-E, which correspond to the
operational protocols used in real satellite missions. From
there, an adversary may try to launch different commands to
take full control and/or compromise the services offered by
the satellite’s mission as depicted in Fig. 4. Finally, in this
paper, the modeling of physical radio communication between
the space and ground segments, which is commonly used in
practice, is considered out of scope and left for future work.
The threat model is further referenced in Sec. IV-E.

IV. HONEYSAT FRAMEWORK DESIGN

In this section, we explain the objectives we aim to
achieve (Sec. IV-A), the design principles we follow to meet
such objectives (Sec. IV-B), and the overall design of our
Space (Sec. IV-D), and Ground (Sec. IV-C) segments.

A. HoneySat’s Design Objectives

Our design aims to achieve the following objectives:
DO-1 Capability to Capture Rich Interaction Data. As

explained in Sec. I, the number one objective of any
honeypot is to capture interaction data from which we
derive knowledge on adversaries’ TTPs. As such, Hon-
eySat’s first objective is to capture rich interaction data.

Ground Software

Flight Software Runtime

Flight Software Services

Satellite Simulator

Satellite
Perso-
nality

Log
Data
Base

Ground Segment Sims

Space Segment Sims

Interaction
Data

Radio Simulator

Ground
Confi-

guration

Exposed Network Protocols

Web Raw PacketsTelnetVNC

Fig. 2. HoneySat framework high-level architecture design.

DO-2 Provide Deception. As we discussed in Sec. I, hon-
eypots’ nature must remain covert to entice adversaries
to interact with it. As such, our second objective is for
HoneySat’s nature to remain hidden from adversaries.

DO-3 Provide Extensibility and Customizability. A frame-
work’s main purpose is to provide generic functionality
that can be customized to meet the user’s needs. In
HoneySat’s case, we must be able to support multiple
SmallSats. For example, a particular SmallSat may use
CSP or CCSDS ecosystems. As such, HoneySat’s third
objective is extensibility and customizability.

B. HoneySat’s Design Principles

To meet our objectives, we selected the following principles:

DP-1 High-Interaction Simulation. As we described in
Sec. II-A, high-interaction honeypots give adversaries
the same or almost identical interaction opportunities
as a real satellite. For these reasons, we selected high-
interaction simulation as our first design principle. This
design principle is based on design objective DO-1.

DP-2 Realistic Simulation. As discussed in Sec. II-B, satel-
lites track their orbit location, among others. These
details must be simulated; otherwise, they may alert
adversaries that they are interacting with a fake system.
This design principle is based on design objective DO-2.

DP-3 Modularity. As we explained in Sec. II, satellites are
complex and diverse systems. To tackle this problem, we
designed HoneySat to be modular. This design principle
is based on our objective DO-3.

We now describe HoneySat’s architecture design and how
this architecture integrates the design principles described
above. At the highest level, our framework’s architecture, de-
picted in Fig. 2, consists of two sets of simulations, the space
segment simulations and the ground segment simulations.
Table VII illustrates how HoneySat’s simulation components
match the components of a real satellite mission.

4

C. Ground Segment Design

Following Sec. II-C, the purpose of the HoneySat’s ground
segment (depicted in Fig. IV) is to simulate the ground seg-
ment assets, e.g., the ground segment software. To accomplish
this, our design includes the following components: 1) the
Exposed Network Protocols, 2) the Ground Segment Software,
3) the Radio Simulator, 4) the Ground Personality, and 5) the
Logging Repository.

1) Exposed Network Protocols. To provide adversaries
with feasible access to our honeypot, HoneySat exposes mul-
tiple means of interaction over a network such as the Internet.
We designed HoneySat to support four different interaction
methods using different protocols, namely VNC, Telnet, Web,
and Access to the ground station via raw packet transmitting
capability; following the design principle DP-3. We selected
these protocols based on data obtained from our satellite
operator survey, discussed in Sec. VI-C, which revealed that
satellite operators do use remote access tools, such as web
interfaces and screen sharing, to operate satellites.

2) Ground Software. As discussed in Sec. II-C, the ground
software includes mission control software (MCS) and ground
station control software (GSCS). We leverage existing ground
software, e.g., Gpredict, allowing HoneySat to provide a high-
interaction simulation following design principle DP-1.

3) Radio Simulator. As discussed in Sec. II-C, communi-
cation between the satellite and the ground station is possible
only during a pass. The purpose of the Radio Simulator is
to mimic real orbital passes by enabling and disabling com-
munication between HoneySat’s ground and space segment
simulations at the appropriate times. The Radio Simulator
design follows the design principles DP-2 and DP-3.

4) Ground Configuration. The ground configuration is a
series of settings for the ground segment-specific configura-
tions, e.g., the satellite mission logo in the Web Interface.

5) Logging Repository. This repository records data such
as the TM/TC traffic to and from the ground station software
and the logging attempts received in the web interface. We
designed the ground segment simulation logs to be catego-
rized and timestamped. The logging repository design follows
design principle DP-3.

D. Space Segment Design

The purpose of the HoneySat’s space segment is to mimic
the spacecraft, as discussed in Sec. II-C. To accomplish
this, our design includes the following components: 1) the
satellite’s Flight Software Runtime, 2) the Satellite Simulator,
3) the Flight Software Services, 4) the Satellite Personality,
and 5) the Logging Repository.

1) Flight Software Runtime. As discussed in Sec. II-D, the
satellite flight software manages all critical functions required
for the mission operation, such as interacting with hardware
peripherals, processing TCs, and sending TM. For this to
work we need an environment where services that handle TC
intended to run on flight software can be run. We reuse existing
compatibility or testing wrappers to run the relevant parts

Comm StateADCS StateEPS State

Voltage Sensor

Power Sim Orientation Sim

Gyro Sensor Radio Sensor

Orbital Sim

Satellite State

Interface

Satellite
Perso-
nality

Logging
Data

Fig. 3. High-level architecture of the Satellite Simulator. Due to space
limitations, we do not show all the available sensors and simulations.

of flight software for HoneySat to provide nearly identical
interactions to an adversary. This produces a high-interaction
honeypot simulation that follows design principle DP-1.

2) Satellite Simulator. One of the biggest challenges when
designing HoneySat was simulating all the physical processes,
e.g., attitude, that satellites need to know. The Satellite Simula-
tor solves this problem by simulating all the necessary satellite
subsystems, e.g., the Electrical Power System, and the sensors,
e.g., a GPS receiver.

As shown in Fig. 3, the Satellite Simulator includes five
module types: simulation modules (orange), sensor modules
(blue), subsystem state modules (green), satellite state modules
(gray) and interface modules (yellow).

Simulation Modules. These modules are abstractions of real-
world processes required for a realistic satellite simulation
(DP-2), e.g., the orbital simulation which uses orbital mechan-
ics to calculate data like the satellite’s orbital position.

These simulation modules can communicate with each other
to facilitate proper functionality. For example, the power
simulation queries the orbital simulation for data to determine
if the satellite is positioned properly to draw power from its
solar panels. The Satellite Simulator includes six simulations,
the orbital, rotation, power system, thermal, magnetic, and
payload simulations.

• Orbital Simulation. The orbital simulation calculates the
satellite’s orbit [36]. It uses the TLE data configured in the
satellite personality and it generates multiple values such as,
latitude, and longitude of the satellite. The payload, EPS,
and magnetic simulations rely on data from this simulation.

• Rotation Simulation. This simulation calculates the satel-
lite’s attitude changes to provide its orientation by using
a reference frame fixed to the satellite body and a non-
rotational reference frame. The relation between the two
reference frames is calculated using the conservation of
angular momentum and the rigid-body Euler equation [55].
This simulation’s data is used by payloads like the Red,
Green, Blue (RGB) camera to point towards Earth’s surface.

• Power System Simulation. This simulation manages the
satellite’s power collection, consumption, and distribution.
It tracks the battery capacity, the power draw and simulates
battery charging whenever the orbital simulation tells it that
the satellite is exposed to sunlight.

• Thermal Simulation. This simulation calculates the satel-

5

lite’s temperature based on the total thermal energy and a
user-defined specific heat capacity and uses a radiation loss
formula [56] to calculate the thermal radiation emission.

• Magnetic Simulation. This simulation tracks and analyzes
the interactions between the Earth’s magnetic field and
the satellite’s own magnetic environment. It communicates
with the orbital and rotation simulations to determine the
satellite’s position and orientation to calculate the Earth’s
magnetic field components.

• RGB Camera Simulation. This simulation replicates the
functionality of an RGB camera pointed at Earth. It uses
Earth observation satellite imagery from the U.S. Geolog-
ical Survey (USGS) [57]. If a capture image command is
issued, it will select and return an image. This simulation
communicates with the orbital simulation to determine if
satellite is in the presence of the sun.
Sensor Modules. These modules are abstractions of the hard-

ware sensors used by a satellite, i.e., temperature sensor. The
sensor modules do not perform any computations, instead they
collect data directly from the simulation modules following
DP-2. For example, the voltage sensor will query the power
simulation to collect data about the current state of the battery.

Subsystem State Modules. These modules are abstractions
of the satellite subsystems discussed in Sec. II-D. A given
subsystem state is made up of one or more sensors. For
example, in Fig. 3 the Payload State (light green) includes
the Camera Sensor (light blue). In this way, subsystem states
serve two purposes. They can get data from their sensors or
can set a specific configuration on their sensors.

Satellite State Module. This module is an abstraction of an
entire satellite. As depicted in Fig. 3 the Satellite State (light
gray) is made up of multiple subsystem states. Satellite State
module routes messages between the Satellite Simulator and
the modified flight software. For example, if the modified flight
software sends a message to the Satellite Simulator requesting
to provide the present voltage in the EPS, the satellite state
will route that message to the EPS State.

Interface Module. This module is an abstraction of the
communication protocol between the modified flight software
and the Satellite Simulator. As depicted in Fig. 3, the Interface
(light yellow) is the module that connects the flight software
services with the Satellite Simulator simulations.

This protocol must implement two basic message types,
requests and replies. However, to meet DO-3, the underlying
implementation of these messages is left open for the user to
decide based on their requirements.

3) Flight Software Services. The flight software services
that process TC and provide TM act as the bridge between
the Satellite Simulator and the rest of the honeypot. In case a
service requires some data from a subsystem of the satellite
or a command is sent to a subsystem, it is passed to the
satellite simulator instead. The satellite state module routes
the service’s messages to and from the Satellite Simulator. It
uses a list of message IDs that can be customized based on
the protocol ecosystem and software architecture complying
with our design principles DP-1 and DP-3.

Adversary's host HoneySat's Host

Ground Segment Sims

Malicious
TCs

Space Segment Sims

Exposed
Network
Protocol

Ground
Software

Radio
Simulator

Flight Software

Runtime

Flight Software

Services

Satellite
Simulator

2 3

4
5

67

89

10

11

1
12

Fig. 4. HoneySat’s Theory of Operation.

4) Satellite Personality. The satellite personality module
is designed to provide a central configuration location for the
space segment. It includes FS and Satellite Simulator con-
figuration values such as the satellite’s battery capacity. The
satellite personality makes our framework easily customizable;
thus following our design principle DP-3.

5) Logging Repository. We designed each space segment
component to provide detailed logs. As shown in Fig. 3, all
Satellite Simulator modules can send their own logs.

E. Theory of Operation

In this section, we provide a brief overview of how the
designed framework components shown in Figure 2 interact
by following the numbers in Fig. 4.

An adversary gets initial access via one of the Exposed Net-
work Protocols 1 . On interacting with the Simulated Ground
Segment, an attacker is presented with access to the Ground
Software 2 . The configuration of this ground software is
defined by the Ground Configuration, which allows the ground
software to look like one of many different missions from
its protocol ecosystem to the attacker. The attacker can then
interact with the Ground Software, while their actions are
reported to the Logging Repository. They might want to try to
gain more privileges on the ground segment or try to send TC
to the space segment. Instead of deploying a ground station
with an RF transmitter and associated hardware, we employ
the Radio Simulator 3 to handle all simulated radio frequency
communications.

When an attacker uses the ground segment to send a valid
TC or raw packets, the Radio Simulator checks whether the
satellite configured in the Satellite Personality is currently
passing over the designated ground station location. If so,
the Radio Simulator forwards the TC to the Flight Software
Runtime 4 . When the Flight Software Runtime receives
a command, it will run the corresponding Flight Software
Service to compute a response 5 . In case it requires either
changes to an on-board system’s state or a sensor value to
execute the TC, it will invoke the Satellite Simulator 6 .
The Satellite Personality contains the configuration used by
the Satellite Simulator. Once a TC is processed, the resulting
TM is routed back through the Radio Simulator to either the

6

Fig. 5. The view an attacker would see upon connection to the VNC server.
Ground Station Control Software (Red) Ecosystem/Mission Specific MCS
(Yellow).

attacker or the ground software used by the attacker 7 - 12 ,
and is also recorded in our Logging Repository.

V. HONEYSAT’S IMPLEMENTATION

Having laid out HoneySat’s design we now explain how
we implemented the Satellite Simulator (Sec. V-A), the
generic CSP mission honeypot (Sec. V-B), the ground segment
(Sec. V-B1), and the space segment (Sec. V-B2).

A. Satellite Simulator Implementation

We implemented the Satellite Simulator as a Python object-
oriented programming application. We implemented 11 sen-
sors, 4 subsystems, 1 satellite state, and 1 interface, based on
our 6 simulations.

B. Generic CSP Mission Honeypot

We implemented HoneySat to support the CSP ecosystem
providing a generic CSP-based honeypot that can simulate any
specific CSP-based mission.

1) Ground Segment Implementation: We now describe how
we implemented the five ground segment simulations designed
in Sec. IV-C. 1) the Exposed Entry Points, 2) the Ground
Software, 3) the Radio Proxy, 4) the Ground Configuration,
and 5) Logging Repository.

1) Exposed Network Protocols. We implemented a VNC
server, a Telnet server, a Web server, and ZeroMQ-based
access to the CSP Network. We implemented the VNC server
using TigerVNC [58] and used PyZMQ [59] for the raw packet
access. The Telnet server was implemented using Python to
expose the command-line interface of the Ground Segment
Software. The web interface allows for the customization of
text presented to the attacker through configuration.

2) Ground Software. To implement the MCS we leveraged
the SUCHAI mission control software (SUCHAI MCS). This
software is a node on the CSP network that has a command
line-based interface that allows basic MCS functionality like
scheduling telecommands or saving downlinked telemetry.
Additionally, we provide a desktop environment accessible via
VNC that includes Gpredict and the SUCHAI MCS. Finally,

we implemented a radio link and network delay simulation
using a sleep function whenever the MCS receives data from
the space segment simulations.

3) Radio Simulator. The Radio Simulator was implemented
as a ZMQ Hub [60]. The ZMQ Hub functions as a router for
the CSP network simulating both the ground part of the CSP
network including the ground station and the space segment.
Depending on whether the satellite is currently passing, pack-
ets to the space segment are forwarded to the Flight Software
Runtime. Additionally, the Radio Simulator dynamically sim-
ulates packet loss depending on the predicted elevation angle
of the satellite (provided by the Satellite Simulator’s orbital
simulation). For example, if an attacker sends a telecommand,
the Radio Simulator will use a probability value based on the
elevation angle and decide to drop or forward the packet.

4) Ground Configuration. We implemented the ground
configuration as settings that can be modified through a Docker
compose file explained in Appendix A.

5) Logging Repository. This implementation uses the Mon-
goDB database [61] to aggregate and store logs. The web
interface records login attempts, while the Telnet server logs
inputs on a per-connection basis. Additionally, network traffic
to and from the host running HoneySat is captured. The logs
are secured at points that are not observable by attackers, e.g.,
different Docker container, shown in Fig. 6, and the isolated
MongoDB database is accessed by an append-only user.

2) Space Segment Implementation: We now describe how
we implemented the four space segment simulations designed
in Sec. IV-D. 1) the Flight Software Runtime, 2) the Flight
Software Services, 3) the Satellite Personality,and 4) the Log-
ging Repository.

1) Flight Software Runtime. We use the SUCHAI Flight
Software (SUCHAI FS) [62], which has been deployed in four
satellite missions [63] and provides flight software based on
the CSP ecosystem.

2) Flight Software Services. The SUCHAI FS uses
libCSP [48] and thus features the libCSP default services
that present a generic attack surface. SUCHAI FS includes
a set of telecommands which we modified to use the Satellite
Simulator instead of querying real sensors.

3) Satellite Personality. The satellite personality was im-
plemented as a Python class that holds multiple variables
related to the space segment. It includes almost 50 configurable
variables, such as the satellite’s name.

4) Logging Repository. Like the ground segment’s logging
repository (Sec V-B1), the Satellite Simulator and the FS are
connected to the MongoDB instance using a MongoDB client.

Finally, we containerized and hardened this version of the
honeypot implementation for secure and easy deployment,
which we describe in Appendix A.

C. Summary of Existing and Newly Developed Software

HoneySat’s implementation involved the integration of ex-
isting, modified, and newly developed software. As-is software
includes TigerVNC, MongoDB, and Gpredict. Modified soft-
ware includes the SUCHAI FS, SUCHAI MCS, the Telnet

7

server, and the ZeroMQ Hub. Newly developed software in-
cludes the Satellite Simulator, including all 6 simulations, the
web interface, the flight software services for FS integration,
the satellite personality, the ground configuration, and all the
necessary framework infrastructure, including Docker files,
integration scripts, and configuration files.

VI. EVALUATION

In order to evaluate HoneySat we start by listing three
experimental questions designed to test its alignment with our
design objectives. Next, we present four sets of experiments
that provide empirical evidence confirming that our design
objectives have been addressed as intended. We then describe
each experiment’s environment, methodologies, and results.

A. Experimental Questions

The following questions aim to determine if HoneySat meets
the design objectives outlined in Sec. IV-A.

Q-1 Can HoneySat offer extensive interaction opportunities
to adversaries?
Since capturing data on varied techniques is the purpose
of any honeypot, we explore the capabilities of HoneySat,
as described in Sec. IV. This question is related to design
objective DO-1 and is addressed in Sec. VI-B.

Q-2 Can HoneySat simulate a SmallSat mission well enough
to deceive adversaries?
After enticing an adversary, HoneySat must keep its true
nature hidden. Thus, HoneySat needs to simulate the satel-
lite’s communication and physics characteristics described
in Sec. II-D. This question relates to design objective DO-2
and is answered in Sec. VI-C and VI-D.

Q-3 Can HoneySat be extended to support different Small-
Sat missions and hardware-in-the-loop simulations?
HoneySat’s customization is important because it would
allow users of our framework to implement their own
honeypots and even support satellite hardware integration.
This question relates to design objective DO-3, and we
answer it in Sec. VI-E and Sec. VI-F.

To answer the above research questions, we conducted five
experiments. First, in Sec. VI-B we craft multiple attacks in a
controlled environment to quantify the level of interaction that
HoneySat provides. Second, in Sec. VI-C we conduct a survey
with experienced satellite operators to evaluate HoneySat’s
realism. Third, in Sec. VI-D we deploy HoneySat and expose
it to the Internet to test its deception capabilities. Fourth,
in Sec. VI-E we test HoneySat’s extensibility by integrating
a completely different flight software. Fifth and final, in
Sec. VI-F we test HoneySat’s support for hardware-in-the-loop
operations.

B. TTP Interaction Experiment

This experiment seeks to answer Q-1 by quantifying the
interactions provided by HoneySat. To achieve this, we lever-
aged the SPACE-SHIELD matrix (Version 2.0) [54] which
provides a collection of adversary tactics and techniques for
space systems. We determined the number of tactics and

techniques that HoneySat supports. SPACE-SHIELD consists
of 14 tactics and 62 techniques. However, not all of them
are applicable to a virtual, network-based honeypot such as
HoneySat. For example, the technique Compromise Hardware
Supply Chain involves “replacing a hardware component in
the supply chain with a custom or counterfeit part” which
is out of the scope of a virtual honeypot. Taking this into
consideration, 14 tactics are applicable to HoneySat. From
these tactics, HoneySat can feasibly offer up to 38 techniques
as interactions for adversaries.

Experiment Description. Our experimental environment
included two hosts. One host running HoneySat and the
adversary host. The HoneySat host ran Ubuntu 23.10 and
was configured with the SUCHAI-2 satellite and ground
personalities. The adversary host ran a Telnet client. Both hosts
were connected to the same network.

Experiment Methodology. We designed one interaction or
exploit for each of the 38 applicable techniques for our hon-
eypot. The interactions involved ground segment simulations
such as the web interface. The exploits were simple, using
one TC, or complex with multiple TCs involved. For example,
the technique System Service Discovery (ID T1007) involves
adversaries obtaining information about services using tools
and OS utility commands. Based on this description, we
designed the following exploit to capture information about
the satellite’s running processes:

TC-1: 1: obc_system ps -aux > ps.log
TC-2: 1: tm_send_file 10 ps.log

Experiment Results. We successfully crafted and ran an
interaction or exploit on HoneySat for 33 techniques out
of the feasible 38 as depicted in Table II. The remaining
5 techniques were not implemented due to limitations in
HoneySat’s implementation. For example, the Retrieve TT&C
master/session keys (T2015.002) technique depends on a cryp-
tographic protocol implementation which HoneySat’s flight
software currently does not support. Due to space limitations,
we do not describe all the exploits and interactions here.
However, the complete exploit and interaction list is available
in Table VIII in Appendix B.

The key findings of our experiment are shown below,
providing strong evidence for answering question Q-1 in the
affirmative and design objective DO-1 as achieved.

Key findings Q-1

• HoneySat supports 87% of the SPACE-SHIELD matrix
techniques possible in a virtual satellite honeypot.

• HoneySat supports 100% of the SPACE-SHIELD ma-
trix tactics.

C. SmallSat Operators Survey

Evaluating the realism of a satellite honeypot is challenging
for two main reasons. First, as discussed in Sec. I, satellites,
including SmallSats, are very diverse. Second, there is no

8

TABLE II
TACTICS AND TECHNIQUES SUPPORTED BY HONEYSAT.

Tactics
SPACE-SHIELD

Techniques
(Applicable to Virtual Honeypots)

HoneySat
Supported
Techniques

Reconnaissance 2 2
Resource Development 2 2
Initial Access 2 2
Execution 2 2
Persistence 2 2
Privilege Escalation 2 1
Defense Evasion 4 4
Credential Access 3 3
Discovery 2 2
Lateral Movement 4 1
Collection 2 2
Command & Control 2 2
Exfiltration 2 1
Impact 7 7

Total 38 33

established metric or tool, such as Nmap’s OS detection [64],
to quantify the level of realism of our honeypot.

To evaluate the realism and deception capabilities of Hon-
eySat, we surveyed experienced SmallSat operators. Because
operators interact with real-world SmallSat missions on a daily
basis they are experts and thus are the best population to
rigorously evaluate HoneySat.

1) Survey Structure: We divided our survey into five sec-
tions. The first section collected the participants’ background
information, e.g., demographic data, the second section fo-
cused on their professional experience, the third section probed
participants’ satellite operation experience, e.g., how many
missions they had operated.

The fourth survey section involved giving participants
hands-on access to a live instance of HoneySat. In this section,
participants were asked to perform 4 hands-on tasks that
correspond to specific satellite mission operations using a live
instance of HoneySat as depicted in Fig. 5. Each hands-on task
was designed to feature different components of HoneySat
by replicating a real-world satellite mission operation, as
discussed in Section II. After participants completed each
hands-on task, they answered questions designed to assess how
realistic they found different aspects of the honeypot. Table III
lists the satellite operations included in the survey.

Finally, in section five, once participants had interacted with
multiple elements of our honeypot, the survey concluded with
participants answering questions about HoneySat’s overall
realism and deception. Questions related to both the honeypot

TABLE III
SUMMARY OF QUESTIONS IN SECTION VI-C, SATELLITE HONEYPOT

OPERATION TASKS OF THE SURVEY.

Satellite Operation Evaluated Component No. Qts.

Telecommand Scheduling Mission Control SW 5
Pass Prediction Ground Station Control SW 5

Telemetry Download Satellite Simulator 7
Ping Test Radio Simulator 5

operation tasks and the overall evaluation used a 5-point Likert
scale [65] to measure the participants’ reactions.

2) Participants: We conducted the survey via Qualtrics and
Zoom videoconferencing and distributed the survey directly
to operators from previously identified missions. In total,
we received responses from 10 satellite operators who have
between 1 to 10 years of experience operating satellites and
have operated between 1 to 5 unique missions. In terms of
demographics, 20% (2/10) of the participants were female and
80% (8/10) male. 30% (3/10) belonged to the 18-24 age group,
40% (4/10) to the 25-34 age group, and 30% (3/10) to the 35-
44 age group. In regards to geographic location, 40% (4/10)
of participants were located in Europe, 20% (2/10) in North
America and 40% (4/10) in South America.

Recruiting participants was challenging due to the rarity and
specialized nature of the required expertise. Over a span of
four months, we reached out to national and international insti-
tutions, as well as private corporations involved in operational
satellite missions to identify suitable participants. Despite
these challenges, our sample is diverse, including operators
from Europe, North America, and South America, spanning
industry, government, and academia, across 5 missions.

3) Methodology and Key Results: In the survey, we eval-
uated three key aspects of our honeypot. First, whether the
ground segment simulations are realistic; second, whether the
space segment simulations are realistic; and third, whether
HoneySat, as a whole, provides a convincing and realistic
SmallSat mission simulation.

Before describing the results, it is important to emphasize
that the participants were informed that the system they
interacted with was a simulation. We informed participants
for two reasons. First, it was not feasible to synchronize
participants’ availability to take the survey with the timing of
the real satellite’s pass, which may happen only a few times per
day and lasts only a few minutes. Second, claiming to provide
access to a real satellite would itself be seen as unrealistic.

Ground Segment Realism. To understand if HoneySat’s
ground segment is realistic, participants interacted with Hon-
eySat by performing different satellite operations (discussed in
Sec. II-C), to showcase the ground segment components listed
in Table III. One of these tasks is the pass prediction operation
which involves calculating when and where a satellite will be
within the communication range of a specific ground station.
This operation is performed using the ground station control
software. After the participants performed this operation on
HoneySat, we asked them to rate their perceived level of
realism. 90% of the participants strongly agreed and 10%
agreed that the pass prediction operation they performed on
HoneySat resembles that of a real mission.

Another relevant operation is the telecommand scheduling
operation which involves the planning and queuing of the
commands to be sent to the satellite during a pass. Again,
after performing this operation on HoneySat, 90% of the
participants strongly agreed and 10% agreed that the telecom-
mand scheduling operation performed resembles that of a real

9

mission mentioning the use of a command line interface-based
mission control software as a contributing factor.

In summary, according to these results, the vast majority
of participants, who are experienced satellite operators, per-
ceive the ground segment simulated by HoneySat as highly
resembling a real satellite mission.

Space Segment Realism. Similarly, to understand Hon-
eySat’s space segment realism level, we gave participants
hands-on access to a live instance of HoneySat and asked them
to perform different operations that make use of HoneySat’s
space segment simulations (discussed in Sec. IV-D).

For example in the telemetry download operation, par-
ticipants issued multiple telecommands to HoneySat’s space
segment simulation to download a plethora of telemetry data,
including EPS, temperature and ADCS data, which was gen-
erated in real time by our Satellite Simulator.

After the participants performed the telemetry download op-
eration, we asked them to rate their perceived level of realism
of the telemetry output shown during the operation. 90% of the
participants agreed or strongly agreed that the telemetry shown
during the live telemetry download operation resembles that
of a real mission, with the temperature telemetry achieving
a 100% strongly agree response rate with some participants
mentioning that the temperature values resemble a normal
operation and align with the expected temperature values of
a satellite. These results indicate that the telemetry generated
by the Satellite Simulator is considered highly realistic by the
vast majority of participants.

In summary, according to these results, the vast majority of
participants, who are experienced satellite operators, perceive
the space segment simulated by HoneySat as highly resem-
bling a real satellite mission.

HoneySat’s Overall Realism. Finally, to understand Hon-
eySat’s overall realism, we asked the participants a series of
overall evaluation questions after they had interacted with
HoneySat. For example, we asked participants to evaluate
the realism of the telecommands used in all hands-on tasks.
70% strongly agreed, 20% agreed and 10% neither agreed
nor disagreed that HoneySat’s telecommands are realistic.
Additionally, when asked if they would be able to distinguish
between HoneySat’s satellite mission simulation and a real
mission, 70% strongly agreed, 20% agreed and 10% neither
agreed nor disagreed that they would not be able to and again
to emphasize that these are experienced satellite operators.

Overall, our survey results provide evidence for answering
question Q-2 in the affirmative and design objective DO-2
as achieved. These findings serve as empirical evidence of
HoneySat’s fidelity when simulating a real satellite mission.
Our survey’s questions and results are available online3.

3https://github.com/HoneySat/honeysat-survey-data.

TABLE IV
HONEYSAT INTERNET DEPLOYMENTS’ DETAILS.

Deployment
Type

Satellite
Personality

HoneySat IP
Location

Duration
(months)

Cloud PIXL-1 Germany 6
Cloud PIXL-1 Germany 6
Cloud ACS3 USA 6
Cloud ACS3 USA 6

On-prem SUCHAI-2 University of Chile 12

Key finding Q-2

90% of surveyed satellite operators agreed with the
statement: “I would not be able to distinguish between
HoneySat’s satellite honeypot system from the real
CubeSat satellite mission it is based on.”

D. Internet Interaction Experiment

This experiment explores HoneySat’s capabilities to entice
external actors by deploying it over the Internet.

Experiment Methodology. We leveraged HoneySat’s cus-
tomization and deployability features to deploy five instances
of HoneySat over the Internet and exposed TCP ports 23 for
Telnet, 80 for the web interface, and 5901 for VNC.

Deployment. Initially, we deployed our first HoneySat
instance to simulate the SUCHAI-2 SmallSat on the premises
of the University of Chile, where the mission’s real ground
segment is. This on-premises deployment provides the most
convincing environment to adversaries. After coordinating
with the University of Chile’s local stakeholders for three
months, we deployed HoneySat on an onsite server using a
University of Chile IP address starting on July 2024.

Although we went to great lengths to make our deployment
as realistic as possible, after a few months, our honeypot did
not entice any external actors. Therefore, in January 2025, we
deployed four additional HoneySat instances on cloud servers.
We configured two instances to simulate NASA’s Advanced
Composite Solar Sail System (ACS3) CubeSat [66], and two
simulating DLR’s PIXL-1 CubeSat [67]. We selected these
two particular CubeSats because they use the CSP ecosys-
tem (Sec. II-E) and are currently in-orbit and operational.
We ensured these additional deployments were believable by
configuring their satellite personalities and giving them public
IP addresses in the regions belonging to the satellite mission
origin, namely Germany and the United States. Table IV
summarizes all five HoneySat deployment details.

While IP assignment can affect our honeypots’ covert sta-
tus [18], the increasing use of cloud and web-based ground
segment services, such as AWS Ground Station [68] and
YAMCS [69], has made cloud-hosted satellite operations in-
creasingly commonplace. As a result, a cloud deployment
no longer inherently signals inauthenticity to adversaries.
Furthermore, the part of the Ground Segment that we expose
on cloud IPs is not dependent on being collocated with the
GS and thus may as well be hosted with a cloud provider.

10

https://github.com/HoneySat/honeysat-survey-data

TABLE V
EXPOSED TELNET INTERACTIONS RECEIVED.

Date Satellite
Personality

HoneySat
IP

Attacker
IP

Cmds
Received Time

Jan 18, 2025 ACS3 USA Egypt 4 2 hr
Jan 24, 2025 PIXL-1 Germany Sweden (Tor) 6 4 min
Jan 24, 2025 ACS3 USA France (Tor) 9 5 min
Apr 3, 2025 ACS3 USA USA 8 3 min

Experiment Results. We collected several gigabytes of net-
work traffic data on ports 23, 80 and 5901 for each honeypot,
however most of these data was generated by crawlers and
bots and not satellite-specific. But, on January 18th, 2025, we
received our first space-specific interaction via Telnet and in
the next few months we received more. Overall, three of our
honeypots successfully enticed external actors and captured
four distinct interaction sessions (shown in Table V) all via
Telnet. The four interaction sessions yielded 22 flight software-
specific commands. These flight software-specific commands
show that the adversaries that interacted with HoneySat were
purposefully trying to exploit our honeypot using commands
that the flight software recognized.

Across the four Internet interaction sessions we observed,
the first lasted two hours and originated from a non-Tor IP
in Egypt. The next two sessions occurred within a week,
shared their command set (e.g., help, ls, and fp_show),
and transitioned to Tor exit nodes in Sweden and France. These
three factors suggest that the same adversary returned using
anonymized infrastructure after initial reconnaissance. The
first session may have ended after the actor gathered sufficient
information. In contrast, the fourth and final interaction in
April, separated by over two months, from a non-Tor U.S.
address, and using a very different command set appears
unrelated and likely originates from a different actor. Overall,
the first three interactions are best interpreted as a single
adversary adapting its anonymity strategy, whereas the last
session was likely initiated by a second actor.

We now describe one of the most complex interaction
sessions HoneySat captured and analyze it in terms of the
SPACE-SHIELD matrix (discussed in Sec. II-F). In this ses-
sion, the adversary targeted one of the ACS3 honeypots located
in the United States. First, they connected to the exposed
Telnet server thus getting access to the ground segment,
this corresponds to the Ground Segment Compromise (ID
T1584.001) technique. Then they issued the “help” and “test”
commands which list the available commands supported by
the MCS and flight software; these commands correspond to
the Gather Victim Mission Information (ID T2002) technique.
Later, the adversary issued the “tm dump 0x0000”, which
writes telemetry data to a file, showing an attempt to extract
mission data, which matches the Exfiltration Over TM Channel
(ID T2022) technique. Next, they sent the “com ping” com-
mand which attempts to initiate an interaction with the target
spacecraft, matching the Active Scanning (RF/Optical) (ID
T2001) technique. The adversary again implemented the Exfil-

tration Over TM Channel (ID T2022) technique by issuing the
“tm parse beacon” command which prints beacon telemetry
(lightweight periodic telemetry) and the “obc get sensor”
command which instructs the OBC to print a particular sen-
sor’s data. Finally, the adversary attempted to tamper with
the spacecraft’s OBC by issuing the “obc update status”
command. This command updates the OBC status variables
to any arbitrary value, thus matching the Modification of On
Board Control Procedures (ID T2010) technique.

Overall, this interaction session alone involved a chain
of five SPACE-SHIELD matrix techniques. However, after
analyzing all four interaction sessions, we identified the
Spacecraft’s Components Discovery (ID T2034) technique,
totaling six SPACE-SHIELD techniques based on real-world
data captured by HoneySat after successfully enticing and
deceiving human adversaries.

While our dataset is relatively small, its significance be-
comes evident when contextualized. For example, according
to a 2018 Open Platform Communications (OPC) group re-
port [70], there are an estimated 47 million OPC-enabled ICS
devices deployed worldwide, compared to 11,000 operational
satellites in 2025 [71]. This represents about 4,700 ICS de-
vices for every one satellite. In other words, attackers have
orders of magnitude more opportunities to target ICS devices
than satellites. Thus, making our dataset a rare and valuable
contribution to understanding space systems’ TTPs.

In addition to its rarity, our dataset is the first empirical
real-world dataset of TTPs against satellites. As such, it not
only provides the first view into how adversaries interact
with satellite systems, but also establishes a reproducible
baseline reference for future studies. Lastly, our contribution
complements prior work that provides limited insights, e.g.,
no specific telecommands [72].

In summary, these results provide strong evidence for an-
swering question Q-2 in the affirmative and design objective
DO-2 as achieved.

Key findings Q-2

• HoneySat deceived human adversaries who sent 22
satellite flight software-specific commands.

• The interactions collected by our HoneySat deploy-
ments comprise six SPACE-SHIELD techniques.

E. Case Study: Extending HoneySat to CCSDS Ecosystem

In Sec. V-B we described how we implemented HoneySat
using one SmallSat protocol ecosystem, namely, CSP. In
this case study, we are interested in testing the extensibility
capabilities of HoneySat to support additional ecosystems
(discussed in Sec. II-E) by adding a second ecosystem to
HoneySat, namely the CCSDS ecosystem.

Experiment Description. We selected CCSDS because
it is a standard protocol suite used by other Small-
Sats [8]. To accomplish this, we leveraged an open-source
CCSDS ecosystem-based flight software framework, RAC-

11

TABLE VI
SMALLSAT ECOSYSTEMS (2) AND EXAMPLE SMALLSATS (3) INTEGRATED

TO HONEYSAT.

Honeypot
Framework

Generic
SmallSat

Ground
Configuration Institution

HoneySat CSP ACS3 NASA
PIXL-1 DLR

SUCHAI-2 U of Chile

CCSDS PUS N/A

COON OS [73], and YAMCS, an open-source Mission Control
software framework with built-in support for PUS [69].

Experiment Methodology. Building upon our HoneySat
framework implementation, as detailed in Sec. V, we enhanced
the system by integrating various components of the RAC-
COON OS and the YAMCS framework.

Regarding the ground segment, we implemented the exposed
network protocol using YAMCS’ built-in web interface. For
the mission control software, we used YAMCS’s built-in
Mission Control Software [69]. For the radio simulator, we
used RACCOON’s communication application. For both the
ground configuration and the logging repository, we again
used YAMCS built-in features.

For the space segment, we implemented the flight software
runtime using the RACCOON framework. For the flight soft-
ware services, we configured the RACCOON framework to
connect it to the YAMCS’s MCS on the ground segment. The
satellite personality and logging repository were based on the
existing HoneySat implementations.

Experiment Results. We successfully extended HoneySat
to support the CCSDS ecosystem. The implementation was
completed by a graduate student with no prior satellite-related
experience in the span of two weeks. However, the majority
of the effort involved in extending HoneySat to support
the CCSDS ecosystem was dedicated to understanding the
ecosystem itself, and analyzing the RACCOON flight software
code and the YAMCS framework documentation. The only
extra implementation that was required was the flight software
services which we modified using Rust. Other than that, we
reused several modules such as the Satellite Simulator.

In summary, these results provide evidence for answering
Q-3 in the affirmative and DO-3 as achieved.

Key findings Q-3

Out of the box HoneySat supports CSP and CCSDS,
the two most widely used space ecosystems, and was
evaluated by simulating 3 real-world SmallSats.

F. Case Study: Hardware-in-the-loop Experiment

This experiment is designed to produce evidence of the ro-
bustness of HoneySat to support real-world satellite hardware-
in-the-loop (HIL) operations.

Experiment Description. In this experiment we integrated
HoneySat with an in-orbit, operational SmallSat mission. To

achieve this, we collaborated with an aerospace company that
develops hardware subsystems for SmallSats. The experiment
involved sending a telecommand from HoneySat’s ground seg-
ment simulation which was then sent to the in-orbit SmallSat,
which would then process the telecommand. Due to security
restrictions, we are unable to disclose the name of the in-orbit
SmallSat which we refer to as SmallSat X.

Experiment Methodology. In order to achieve the HIL
integration, we customized both HoneySat and SmallSat X’s
mission. For HoneySat, we modified the Satellite Simulator
to support SmallSat X’s mission control software (YAMCS).
Specifically, we deployed a proxy server that connected the
Satellite Simulator to the SmallSat X’s mission production
YAMCS instance. Conversely, the SmallSat X’s environment
was customized by aerospace company’s team by deploying
a script in their YAMCS instance to complete the integration.
Once the integration was completed, we coordinated with the
aerospace company to send a telecommand from HoneySat
during one of SmallSat X’s passes.

Experiment Results. The telecommand successfully
reached SmallSat X during one of the passes and HoneySat
received the appropriate telemetry. Due to security restrictions,
we are not able to disclose details on the telecommand and the
telemetry received. However, the entire communication was
initiated by HoneySat which in turn received sanitized teleme-
try from SmallSat X, effectively closing the loop in the HIL
experiment. Additionally, the aerospace company provided us
with a snippet of radio signal data shown in Fig. 7, which
confirms that the experiment was successful. In summary,
these results highlight HoneySat’s robust extensibility features
and provide strong evidence for answering question Q-3 in
the affirmative and design objective DO-3 as achieved. These
findings serve as empirical evidence of HoneySat’s fidelity
when interacting with a real satellite mission.

Key findings Q-3

HoneySat was successfully integrated into a satel-
lite hardware-in-the-loop operation and communicated
with an in-orbit, operational SmallSat.

VII. DISCUSSION AND FUTURE WORK

Challenges of Creating the First Satellite Honeypot.
During HoneySat’s design and implementation we encountered
and overcame two main challenges which stemmed from
fundamental differences between satellites and other Cyber-
Physical Systems (CPS), e.g., ICS.

First, time and link-constrained communication. Unlike ICS
honeypots, which assume continuous network connectivity and
stable control loops, e.g., scan cycles, satellite communication
occurs only during orbital passes with variable duration and
packet loss. To overcome this challenge, we developed the
Radio Simulator discussed in Sec. IV-C.

Second, dynamic physics-aware simulation. ICS honeypots
simulate sensor readings through simple physics loops (e.g.,

12

tank level, valve position). In contrast, a satellite honey-
pot must dynamically maintain physically coherent telemetry
across interdependent subsystems such as attitude, and power.
We addressed this by creating the Satellite Simulator, which
simulates subsystems and sensors that communicate between
each other and generate data in real time.

Satellite Honeynets. To increase attacker engagement and
reflect emerging satellite networks [74], multiple HoneySat
instances can be deployed as a honeynet [75]. Each instance
could simulate different satellites and communicate through
virtual inter-satellite links (ISLs). In addition, HoneySat could
also be part of a honeynet connected to other ground mission
infrastructure such as database servers and radio equipment.
Due to HoneySat’s extensibility, these honeynet scenarios
could be implemented in the future.

Satellite Honeypots’ Fingerprinting. Based on our expe-
rience designing, implementing and evaluating HoneySat we
now discuss some qualitative detection vectors that can guide
future satellite honeypot fingerprinting research.

Space Protocol Uniformity. The use of default space proto-
col configurations may be used for fingerprinting. For example,
CSP deployments built directly from libCSP expose identical
port assignments and diagnostic services, e.g. ping.

Perfectly periodic pass timing. Real satellites rarely follow
identical pass schedules; orbital perturbations, TLE drift, and
operational delays introduce small timing variations. A honey-
pot that enables communication at perfectly fixed intervals or
with constant latency can thus be fingerprinted. To avoid this,
HoneySat periodically downloads the latest TLE data to keep
the orbital simulation from drifting. This, on the other hand,
causes a jump in the orbit once the new TLE data is used to
base the simulation on.

Telecommand implementation. A given FS may have com-
pletely different telecommand names and functions depending
on the satellite and thus a mismatch may reveal the honeypot.
Additionally, telecommands may have revealing features that
print information about the underlying honeypot host, e.g.,
Ubuntu, which may reveal the simulation.

A. Initial Satellite Honeypot Anti-Detection Techniques

Building upon lessons learned from HoneySat’s develop-
ment and from other CPS honeypots [76], [77], we identify
concrete strategies to enhance HoneySat’s and future satellite
honeypots’ resistance to fingerprinting and detection.

a) Improve Environmental Diversity: Previous research
shows that static structural layouts and repeated host finger-
prints enable easy detection [77]. Future satellite honeypots
and honeynets can incorporate diversity in its ground segment
topology, and network services. Following the Purdue-style
segmentation [78] used in ICS honeypots, different HoneySat
modules (mission control, station control, payload) can be
isolated behind realistic network layers such as routers and
firewalls.

b) Implement Adaptive Reconfiguration: Honeypot adap-
tive reconfiguration occurs when a honeypot recognizes that

it is being probed or scanned, e.g., Nmap probes, and re-
configures itself to avoid detection [79], [76]. Adapting this
technique to satellite honeypots would involve both the ground
and space segments. For example, the honeypot could modify
exposed services, e.g., CSP over ZeroMQ to appear as a
different ground station node. Additionally, different telemetry
datasets could be rotated, or switched between low interaction
and high interaction versions of the honeypot [80].

c) Use Real hardware and software identifiers: Future
satellite honeypots could use real hardware identity and fin-
gerprints such as MAC Organizationally Unique Identifiers
(OUIs), and telemetry headers such as APIDs (Application
Process Identifiers) [81]. Obtaining these details is non-trivial
as they are often proprietary or absent from public documenta-
tion, and may require reverse-engineering, or careful analysis
of captured mission traffic.

Limitations. Currently, the functionality of some subsys-
tems within HoneySat’s Satellite Simulator are constrained by
the quality of the data provided. For example, the resolution of
Earth’s images generated by our camera payload depends on
the resolution of its source data (USGS [57]). Consequently,
creating a honeypot for a satellite with a high-resolution
camera payload would not be feasible without addressing the
underlying issues of data source quality.

Broader Applications of HoneySat. Originally designed
as a honeypot, our framework can potentially support a range
of applications beyond its initial purpose. One promising use
case is the development of digital twins for satellite systems,
enabling the simulation of real-world satellite subsystems and
communication scenarios. Furthermore, HoneySat can be inte-
grated into cyber range environments to enhance cybersecurity
training exercises.

VIII. CONCLUSION

Although we have yet to witness a Stuxnet-like cyberattack
on space systems, security researchers need to develop ef-
fective countermeasures to secure satellites. In this paper, we
introduced HoneySat, the first satellite honeypot that simulates
a satellite mission and provided evidence that our honeypot
can obtain real-world interaction data and can be extended
with real-world satellite software and hardware. Finally, we
hope that security researchers use HoneySat’s open-source
implementation as a foundation not only for satellite honeypot
deployments but also for simulation, and training applications.

ACKNOWLEDGMENTS

We thank our shepherd and the anonymous reviewers for
their helpful suggestions towards improving this paper. The
project underlying this paper was funded by the Federal
Ministry of Transport (BMV) under the code 45AVF5A011
and was partially supported by NSF awards No. 2131263 and
2232911, and by the US Department of Transportation (US-
DOT) CYBER-CARE Grant No. 69A3552348332. We further
thank the Saarbrücken Graduate School of Computer Science
for their funding and support. The authors are responsible for
the content of this publication.

13

IX. ETHICAL CONSIDERATIONS

In this paper, we consider the ethical consequences and pos-
sible negative outcomes of the satellite operator user study and
the HoneySat deployments. We now discuss the stakeholders,
potential risks, and how we mitigated those risks.

A. Satellite Operators User Study
Prior to conducting any research, the survey protocol, and

materials were submitted for review by our Institutional Re-
view Board (IRB). The protocol received “exempt status”,
indicating no more than minimal risk.

Stakeholder Identification. The primary stakeholders in
the survey are survey participants.

Risk Mitigation. The main risk for the survey participants is
the breach of privacy. To mitigate this risk, we ensured that no
identifiable data (e.g., names) was collected, and the responses
remain anonymous. Additionally, the survey itself includes an
informed consent section that informs the respondents about
the voluntary participation, the survey’s purpose, a description
of the procedures, the risks involved, contact information, and
the option to opt out of the survey. Finally, we provided
participants the choice to skip questions using the response
options “Prefer not to say” and “I do not know.”

B. Honeypot Deployment Experiment
Stakeholder Identification. The primary stakeholders in

the honeypot deployment are the external actors who interact
with our honeypot and the infrastructure owners on whose
infrastructure our honeypot is running.

Risk Mitigation. The main risk for the infrastructure
owners is that external actors will use our honeypot as a
stepping stone to breach their infrastructure. For the on-prem
deployments, we worked with the local IT administrators to
ensure that we took all the necessary precautions to avoid this
scenario. First, we were provided with a server with a clean
OS installation that did not have any production applications
or sensitive data. Second, the server was isolated on its own
network segment. Third, we configured a firewall to only
allow the necessary ports. Fourth, the VNC portion of the
honeypot is configured so that external actors cannot use it
to host malicious services by denying traffic forwarding. Fifth
and final, we deployed our honeypot using two sandboxing
layers (Docker containers and Virtual Machines (VMs) as we
discussed in Appendix A.

The main risk for the external actors is the breach of their
privacy. However, it is generally accepted that trespassers of
a computer system do not have reasonable expectation of
privacy [82]. In order to mitigate this risk, our honeypot
system gives notice and warning to any user connecting to
it indicating that “This computer system is for authorized
use only.” Additionally, the web services of our honeypot are
protected by a username and password.

REFERENCES

[1] United States Space Force, “Global positioning system ¿ space
operations command (spoc) ¿ display,” Feb. 2023. [Online]. Avail-
able: https://www.spoc.spaceforce.mil/About-Us/Fact-Sheets/Display/
Article/2381726/global-positioning-system

[2] Gunter’s Space Page, “Uwe-1 (universität würzburg’s
experimentalsatellit-1),” https://space.skyrocket.de/doc sdat/uwe-1.htm,
2005, accessed: 2025-08-06.

[3] M. Holmes, “The growing risk of a major satellite cyber attack,”
May 2023. [Online]. Available: https://interactive.satellitetoday.com/
the-growing-risk-of-a-major-satellite-cyber-attack/

[4] V. Charlotte and P. Walter, “A world without satellite data as a result
of a global cyber-attack,” Space Policy, vol. 59, p. 101458, 2022.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0265964621000503

[5] J. Drmola and T. Hubik, “Kessler syndrome: System dynamics model,”
Space Policy, vol. 44, pp. 29–39, 2018.

[6] M. Semanik and P. Crotty, “U.s. private space launch
industry is out of this world,” Nov. 2023. [Online].
Available: https://www.usitc.gov/publications/332/executive briefings/
ebot us private space launch industry is out of this world.pdf

[7] S. L. O. California Polytechnic State University, “Earth station - polysat,”
Apr. 2024. [Online]. Available: https://www.polysat.org/earth-station

[8] J. Willbold, M. Schloegel, M. Vögele, M. Gerhardt, T. Holz, and
A. Abbasi, “Space odyssey: An experimental software security analysis
of satellites,” in 2023 IEEE Symposium on Security and Privacy (SP),
2023, pp. 1–19.

[9] T. Scharnowski, F. Buchmann, S. Wörner, and T. Holz, “A case study
on fuzzing satellite firmware,” in Workshop on the Security of Space
and Satellite Systems (SpaceSec), 2023.

[10] J. Pavur and I. Martinovic, “Building a launchpad for satellite cyber-
security research: lessons from 60 years of spaceflight,” Journal of
Cybersecurity, vol. 8, no. 1, p. tyac008, 2022.

[11] T. Holz and F. Raynal, “Detecting honeypots and other suspicious envi-
ronments,” in Proceedings from the sixth annual IEEE SMC information
assurance workshop. West Point, NY, USA: IEEE, 2005, pp. 29–36.

[12] F. Cohen, “The use of deception techniques: Honeypots and decoys,”
Handbook of Information Security, vol. 3, no. 1, pp. 646–655, 2006.

[13] ——, “Deception toolkit,” Mar. 1998. [Online]. Available: http:
//all.net/dtk/

[14] L. Franceschi-Bicchierai, “Thousands of new honey-
pots deployed across israel to catch hackers,” Nov.
2023. [Online]. Available: https://techcrunch.com/2023/11/20/
thousands-of-new-honeypots-deployed-across-israel-to-catch-hackers/

[15] M. Burgess, “A clever honeypot tricked hackers into revealing their
secrets,” Aug. 2023. [Online]. Available: https://www.wired.com/story/
hacker-honeypot-go-secure/

[16] S. Hilt, F. Maggi, C. Perine, L. Remorin, M. Rösler, and R. Vosseler,
“Caught in the act: Running a realistic factory honeypot to capture real
threats,” Trend Micro Research, 2020.

[17] Shared Threat Intelligence for Network Gatekeeping and Automated
Response (STINGAR), “About - stingar,” Apr. 2024. [Online].
Available: https://stingar.security.duke.edu/about-2/

[18] E. López-Morales, C. Rubio-Medrano, A. Doupé, Y. Shoshitaishvili,
R. Wang, T. Bao, and G.-J. Ahn, “Honeyplc: A next-generation honeypot
for industrial control systems,” in Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS ’20.
New York, NY, USA: Association for Computing Machinery, 2020, p.
279–291. [Online]. Available: https://doi.org/10.1145/3372297.3423356

[19] B. Acharya, M. Saad, A. E. Cinà, L. Schönherr, H. D. Nguyen,
A. Oest, P. Vadrevu, and T. Holz, “Conning the crypto conman:
End-to-end analysis of cryptocurrency-based technical support scams,”
in 2024 IEEE Symposium on Security and Privacy (SP). Los Alamitos,
CA, USA: IEEE Computer Society, may 2024. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/SP54263.2024.00156

[20] N. Boschetti, N. G. Gordon, and G. Falco, “Space cybersecurity lessons
learned from the viasat cyberattack,” in ASCEND 2022, 2022, p. 4380.

[21] R. Bisping, J. Willbold, M. Strohmeier, and V. Lenders, “Wireless
signal injection attacks on VSAT satellite modems,” in 33rd USENIX
Security Symposium (USENIX Security 24). Philadelphia, PA: USENIX
Association, Aug. 2024, pp. 6075–6091. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity24/presentation/bisping

[22] G. Kavallieratos and S. Katsikas, “An exploratory analysis of the last
frontier: A systematic literature review of cybersecurity in space,”
International Journal of Critical Infrastructure Protection, p. 100640,
2023.

[23] J. Willbold, M. Schloegel, R. Bisping, M. Strohmeier, T. Holz, and
V. Lenders, “Vsaster: Uncovering inherent security issues in current
vsat system practices,” in Proceedings of the 17th ACM Conference

14

https://www.spoc.spaceforce.mil/About-Us/Fact-Sheets/Display/Article/2381726/global-positioning-system
https://www.spoc.spaceforce.mil/About-Us/Fact-Sheets/Display/Article/2381726/global-positioning-system
https://space.skyrocket.de/doc_sdat/uwe-1.htm
https://interactive.satellitetoday.com/the-growing-risk-of-a-major-satellite-cyber-attack/
https://interactive.satellitetoday.com/the-growing-risk-of-a-major-satellite-cyber-attack/
https://www.sciencedirect.com/science/article/pii/S0265964621000503
https://www.sciencedirect.com/science/article/pii/S0265964621000503
https://www.usitc.gov/publications/332/executive_briefings/ebot_us_private_space_launch_industry_is_out_of_this_world.pdf
https://www.usitc.gov/publications/332/executive_briefings/ebot_us_private_space_launch_industry_is_out_of_this_world.pdf
https://www.polysat.org/earth-station
http://all.net/dtk/
http://all.net/dtk/
https://techcrunch.com/2023/11/20/thousands-of-new-honeypots-deployed-across-israel-to-catch-hackers/
https://techcrunch.com/2023/11/20/thousands-of-new-honeypots-deployed-across-israel-to-catch-hackers/
https://www.wired.com/story/hacker-honeypot-go-secure/
https://www.wired.com/story/hacker-honeypot-go-secure/
https://stingar.security.duke.edu/about-2/
https://doi.org/10.1145/3372297.3423356
https://doi.ieeecomputersociety.org/10.1109/SP54263.2024.00156
https://www.usenix.org/conference/usenixsecurity24/presentation/bisping
https://www.usenix.org/conference/usenixsecurity24/presentation/bisping

on Security and Privacy in Wireless and Mobile Networks, 2024, pp.
288–299.

[24] NASA, “What are smallsats and cubesats?” [Online]. Available:
https://www.nasa.gov/what-are-smallsats-and-cubesats/

[25] J. Vestergaard, “mushorg/conpot: Ics/scada honeypot,” Mar. 2024.
[Online]. Available: https://github.com/mushorg/conpot

[26] N. Provos and T. Holz, Virtual honeypots: from botnet tracking to
intrusion detection. Boston, MA, USA: Pearson Education, 2007.

[27] G. Marra, U. Planta, P. Wüstenberg, and A. Abbasi, “On the feasibility
of cubesats application sandboxing for space missions,” in Workshop on
the Security of Space and Satellite Systems (SpaceSec), 2024.

[28] M. Oosterhof, “cowrie/cowrie: Cowrie ssh/telnet honeypot
https://cowrie.readthedocs.io,” Apr. 2024. [Online]. Available:
https://github.com/cowrie/cowrie

[29] N. Ilg, P. Duplys, D. Sisejkovic, and M. Menth, “A survey of
contemporary open-source honeypots, frameworks, and tools,” Journal
of Network and Computer Applications, vol. 220, p. 103737, 2023.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S108480452300156X

[30] J. Nazario, “paralax/awesome-honeypots: an awesome list of honeypot
resources,” Mar. 2024. [Online]. Available: https://github.com/paralax/
awesome-honeypots

[31] M. Lucchese, F. Lupia, M. Merro, F. Paci, N. Zannone, and A. Furfaro,
“Honeyics: A high-interaction physics-aware honeynet for industrial
control systems,” in Proceedings of the 18th International Conference
on Availability, Reliability and Security, ser. ARES ’23. New York,
NY, USA: Association for Computing Machinery, 2023. [Online].
Available: https://doi.org/10.1145/3600160.3604984

[32] J. Daubert, D. Boopalan, M. Mühlhäuser, and E. Vasilomanolakis, “Hon-
eydrone: A medium-interaction unmanned aerial vehicle honeypot,” in
NOMS 2018 - 2018 IEEE/IFIP Network Operations and Management
Symposium, 2018, pp. 1–6.

[33] M. Conti, F. Trolese, and F. Turrin, “Icspot: A high-interaction honeypot
for industrial control systems,” in 2022 International Symposium on
Networks, Computers and Communications (ISNCC), 2022, pp. 1–4.

[34] The European Space Agency, “Esa - telemetry
& telecommand,” Mar. 2013. [Online]. Available:
https://www.esa.int/Enabling Support/Space Engineering Technology/
Onboard Computers and Data Handling/Telemetry Telecommand

[35] L. Wood, “Introduction to satellite constellations: orbital types, uses and
related facts,” Jul. 2006. [Online]. Available: https://savi.sourceforge.io/
about/lloyd-wood-isu-summer-06-constellations-talk.pdf

[36] D. A. Vallado and P. J. Cefola, “Two-line element sets–practice and
use,” in 63rd International Astronautical Congress. Naples, Italy:
International Astronautical Federation, 2012, pp. 1–14.

[37] A. Salces and J. Javier, “Maya-1: Cube satellite latest pinoy venture into
space,” Philippine Daily Inquirer, Jul 2018, accessed: 2025-08-06.

[38] NASA Goddard Space Flight Center, “Flight training: Introduction.”
[Online]. Available: https://solc.gsfc.nasa.gov/modules/missionops/
mainMenu textOnly.php

[39] Space and Planetary Exploration Laboratory, University of Chile,
“SPEL / SUCHAI-Flight-Software · GitLab,” Feb. 2024. [Online].
Available: https://gitlab.com/spel-uchile/suchai-flight-software

[40] GomSpace, “Nanocom ms100 datasheet,” Mar. 2021. [On-
line]. Available: https://gomspace.com/UserFiles/Subsystems/datasheet/
gs-ds-nanocom-ms100-13.pdf

[41] M. Merri, A. Ercolani, D. Guerrucci, V. Reggestad, and
D. Verrier, “Cutting the cost of esa mission ground software,”
May 2007. [Online]. Available: https://www.esa.int/esapub/bulletin/
bulletin130/bul130g merri.pdf

[42] A. Csete, “Gpredict: Free, real-time satellite tracking and orbit prediction
software,” Dec. 2023. [Online]. Available: https://oz9aec.dk/gpredict/

[43] W. D. Ivancic, “Architecture and system engineering development study
of space-based satellite networks for nasa missions,” in 2003 Aerospace
Conference, no. NASA/TM-2003-212187, 2003.

[44] B. D. Yost, “Nasa ssri knowledge base — detailed design and analysis ¿
subsystem design ¿ command and data handling,” Jun. 2023. [Online].
Available: https://s3vi.ndc.nasa.gov/ssri-kb/topics/32/

[45] D. McComas, J. Wilmot, and A. Cudmore, “The core flight system
(cfs) community: Providing low cost solutions for small spacecraft,” in
Annual AIAA/USU Conference on Small Satellites. Logan, UT: Utah
State University, University Libraries, 2016.

[46] The European Space Agency, “Esa - about payload systems,” Apr.
2024. [Online]. Available: https://www.esa.int/Enabling Support/Space
Engineering Technology/About Payload Systems

[47] NASA, “What is remote sensing? — earthdata,” Aug.
2019. [Online]. Available: https://www.earthdata.nasa.gov/learn/
backgrounders/remote-sensing

[48] Y. Shoji, “libcsp/libcsp,” Feb. 2024. [Online]. Available: https:
//github.com/libcsp/libcsp

[49] The ZeroMQ authors, “ZeroMQ — get started,” 2024. [Online].
Available: https://zeromq.org/get-started/

[50] M. M. Sam Cooper, “Ccsds mission operations,” https:
//indico.esa.int/event/62/contributions/2797/attachments/2307/2667/
1235 - mission-operation-services---future-trends Presentation.pdf,
[Accessed 20-01-2025].

[51] J.-F. Kaufeler, “The esa standard for telemetry and telecommand packet
utilisation: Pus,” in NASA. Goddard Space Flight Center, Third Inter-
national Symposium on Space Mission Operations and Ground Data
Systems, Part 2, 1994.

[52] M. Raza, “What are ttps? tactics, techniques & procedures explained,”
Apr. 2024. [Online]. Available: https://www.splunk.com/en us/blog/
learn/ttp-tactics-techniques-procedures.html

[53] National Institute of Standards and Technology (NIST), “tactics, tech-
niques, and procedures (ttp) - glossary,” Apr. 2024. [Online]. Available:
https://csrc.nist.gov/glossary/term/tactics techniques and procedures

[54] E. S. Agency, “ESA SPACE-SHIELD,” 2023. [Online]. Available:
https://spaceshield.esa.int/#

[55] C. A. Truesdell, A First Course in Rational Continuum Mechanics V1.
Academic Press, 1992.

[56] S. B. Giddings, “Hawking radiation, the stefan–boltzmann law, and
unitarization,” Physics Letters B, vol. 754, pp. 39–42, 2016.

[57] U.S. Geological Survey, “Earthexplorer — u.s. geological survey,” Nov.
2022. [Online]. Available: https://www.usgs.gov/tools/earthexplorer

[58] P. Ossman, “Tigervnc/tigervnc: High performance, multi-platform
vnc client and server,” Jul. 2024. [Online]. Available: https:
//github.com/TigerVNC/tigervnc

[59] B. E. Granger and M. Ragan-Kelley, “Pyzmq documentation,” Apr.
2024. [Online]. Available: https://pyzmq.readthedocs.io/en/latest/

[60] Y. Shoji, “The Protocol Stack — Cubesat Space Protocol,” 2024.
[Online]. Available: https://libcsp.github.io/libcsp/protocolstack.html

[61] MongoDB, Inc., “Mongodb: The developer data platform — mongodb,”
Apr. 2024. [Online]. Available: https://www.mongodb.com/

[62] C. E. Gonzalez, C. J. Rojas, A. Bergel, and M. A. Diaz, “An architecture-
tracking approach to evaluate a modular and extensible flight software
for cubesat nanosatellites,” IEEE Access, vol. 7, pp. 126 409–126 429,
2019.

[63] C. Garrido, E. Obreque, M. Vidal-Valladares, S. Gutierrez, and
M. Diaz Quezada, “The first chilean satellite swarm: Approach
and lessons learned,” in AIAA/USU Conference on Small Satellites,
Year in Review - Research & Academia, SSC23-WVII-07, Logan,
UT, 2023. [Online]. Available: https://digitalcommons.usu.edu/smallsat/
2023/all2023/56/

[64] Nmap, “Os detection,” Jan. 2025. [Online]. Available: https://nmap.org/
book/man-os-detection.html

[65] Qualtrics, “What is a likert scale?” Jan. 2025. [Online]. Available: https:
//www.qualtrics.com/experience-management/research/likert-scale/

[66] NASA, “Advanced composite solar sail system (acs3),” Jan. 2025.
[Online]. Available: https://www.nasa.gov/mission/acs3/

[67] eoPortal, “Pixl-1 / formerly cubel or osiris4cubesat,” Jan. 2025.
[Online]. Available: https://www.eoportal.org/satellite-missions/pixl-1

[68] Amazon Web Services, “Satellite as a service - aws ground station
- aws,” Mar. 2024. [Online]. Available: https://aws.amazon.com/
ground-station/

[69] “Yamcs Mission Control,” https://yamcs.org, 2025, [Accessed 23-01-
2025].

[70] ARC Advisory Group, “Opc installed base insights,” OPC
Foundation, Tech. Rep., 2018, accessed October 2025.
[Online]. Available: https://opcfoundation.org/wp-content/uploads/2018/
02/ARC-Report-OPC-Installed-Base-Insights.pdf

[71] M. Wall. (2024, July) How many satellites could
fit in earth orbit—and how many do we re-
ally need? Accessed October 2025, Live Science. [On-
line]. Available: https://www.livescience.com/space/space-exploration/
how-many-satellites-could-fit-in-earth-orbit-and-how-many-do-we

15

https://www.nasa.gov/what-are-smallsats-and-cubesats/
https://github.com/mushorg/conpot
https://github.com/cowrie/cowrie
https://www.sciencedirect.com/science/article/pii/S108480452300156X
https://www.sciencedirect.com/science/article/pii/S108480452300156X
https://github.com/paralax/awesome-honeypots
https://github.com/paralax/awesome-honeypots
https://doi.org/10.1145/3600160.3604984
https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Onboard_Computers_and_Data_Handling/Telemetry_Telecommand
https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Onboard_Computers_and_Data_Handling/Telemetry_Telecommand
https://savi.sourceforge.io/about/lloyd-wood-isu-summer-06-constellations-talk.pdf
https://savi.sourceforge.io/about/lloyd-wood-isu-summer-06-constellations-talk.pdf
https://solc.gsfc.nasa.gov/modules/missionops/mainMenu_textOnly.php
https://solc.gsfc.nasa.gov/modules/missionops/mainMenu_textOnly.php
https://gitlab.com/spel-uchile/suchai-flight-software
https://gomspace.com/UserFiles/Subsystems/datasheet/gs-ds-nanocom-ms100-13.pdf
https://gomspace.com/UserFiles/Subsystems/datasheet/gs-ds-nanocom-ms100-13.pdf
https://www.esa.int/esapub/bulletin/bulletin130/bul130g_merri.pdf
https://www.esa.int/esapub/bulletin/bulletin130/bul130g_merri.pdf
https://oz9aec.dk/gpredict/
https://s3vi.ndc.nasa.gov/ssri-kb/topics/32/
https://www.esa.int/Enabling_Support/Space_Engineering_Technology/About_Payload_Systems
https://www.esa.int/Enabling_Support/Space_Engineering_Technology/About_Payload_Systems
https://www.earthdata.nasa.gov/learn/backgrounders/remote-sensing
https://www.earthdata.nasa.gov/learn/backgrounders/remote-sensing
https://github.com/libcsp/libcsp
https://github.com/libcsp/libcsp
https://zeromq.org/get-started/
https://indico.esa.int/event/62/contributions/2797/attachments/2307/2667/1235_-_mission-operation-services---future-trends_Presentation.pdf
https://indico.esa.int/event/62/contributions/2797/attachments/2307/2667/1235_-_mission-operation-services---future-trends_Presentation.pdf
https://indico.esa.int/event/62/contributions/2797/attachments/2307/2667/1235_-_mission-operation-services---future-trends_Presentation.pdf
https://www.splunk.com/en_us/blog/learn/ttp-tactics-techniques-procedures.html
https://www.splunk.com/en_us/blog/learn/ttp-tactics-techniques-procedures.html
https://csrc.nist.gov/glossary/term/tactics_techniques_and_procedures
https://spaceshield.esa.int/#
https://www.usgs.gov/tools/earthexplorer
https://github.com/TigerVNC/tigervnc
https://github.com/TigerVNC/tigervnc
https://pyzmq.readthedocs.io/en/latest/
https://libcsp.github.io/libcsp/protocolstack.html
https://www.mongodb.com/
https://digitalcommons.usu.edu/smallsat/2023/all2023/56/
https://digitalcommons.usu.edu/smallsat/2023/all2023/56/
https://nmap.org/book/man-os-detection.html
https://nmap.org/book/man-os-detection.html
https://www.qualtrics.com/experience-management/research/likert-scale/
https://www.qualtrics.com/experience-management/research/likert-scale/
https://www.nasa.gov/mission/acs3/
https://www.eoportal.org/satellite-missions/pixl-1
https://aws.amazon.com/ground-station/
https://aws.amazon.com/ground-station/
https://yamcs.org
https://opcfoundation.org/wp-content/uploads/2018/02/ARC-Report-OPC-Installed-Base-Insights.pdf
https://opcfoundation.org/wp-content/uploads/2018/02/ARC-Report-OPC-Installed-Base-Insights.pdf
https://www.livescience.com/space/space-exploration/how-many-satellites-could-fit-in-earth-orbit-and-how-many-do-we
https://www.livescience.com/space/space-exploration/how-many-satellites-could-fit-in-earth-orbit-and-how-many-do-we

[72] U.S.-China Economic and Security Review Commission, “2011 annual
report to congress,” U.S. Government Printing Office, Tech. Rep., 2011,
accessed October 2025. [Online]. Available: https://www.uscc.gov/sites/
default/files/annual reports/annual report full 11.pdf

[73] P. W. José Manual Diez, Fabian Krech, “Raccoon os,” https://gitlab.com/
rccn, [Accessed 20-01-2025].

[74] S. Ma, Y. C. Chou, H. Zhao, L. Chen, X. Ma, and J. Liu, “Network
characteristics of leo satellite constellations: A starlink-based measure-
ment from end users,” in IEEE INFOCOM 2023-IEEE Conference on
Computer Communications. IEEE, 2023, pp. 1–10.

[75] L. Salazar, E. López-Morales, J. Lozano, C. Rubio-Medrano, and
A. A. Cárdenas, “Icsnet: A hybrid-interaction honeynet for industrial
control systems,” in Proceedings of the Sixth Workshop on CPS&IoT
Security and Privacy, ser. CPSIoTSec’24. New York, NY, USA:
Association for Computing Machinery, 2024, p. 68–79. [Online].
Available: https://doi.org/10.1145/3690134.3694813

[76] J. Uitto, S. Rauti, S. Laurén, and V. Leppänen, “A survey on anti-
honeypot and anti-introspection methods,” in World Conference on
Information Systems and Technologies. Springer, 2017, pp. 125–134.

[77] V. Tay, X. Li, D. Mashima, B. Ng, P. Cao, Z. Kalbarczyk, and R. K.
Iyer, “Taxonomy of fingerprinting techniques for evaluation of smart
grid honeypot realism,” in 2023 IEEE International Conference on
Communications, Control, and Computing Technologies for Smart Grids
(SmartGridComm). IEEE, 2023, pp. 1–7.

[78] E. López-Morales, U. Planta, C. Rubio-Medrano, A. Abbasi,
and A. A. Cardenas, “SoK: Security of programmable logic
controllers,” in 33rd USENIX Security Symposium (USENIX Security
24). Philadelphia, PA: USENIX Association, Aug. 2024, pp.
7103–7122. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity24/presentation/lopez-morales

[79] R. Gabrys, D. Silva, and M. Bilinski, “Honeygan pots: A deep
learning approach for generating honeypots,” 2024. [Online]. Available:
https://arxiv.org/abs/2407.07292

[80] S. Kyung, W. Han, N. Tiwari, V. H. Dixit, L. Srinivas, Z. Zhao,
A. Doupé, and G.-J. Ahn, “Honeyproxy: Design and implementation
of next-generation honeynet via sdn,” in 2017 IEEE Conference on
Communications and Network Security (CNS). IEEE, 2017, pp. 1–9.

[81] T. C. C. for Space Data Systems (CCSDS), “Space Packet Protocol,”
2020. [Online]. Available: https://public.ccsds.org/Pubs/133x0b2e1.pdf

[82] L. Spitzner, Honeypots: tracking hackers. Addison-Wesley Longman
Publishing Co., Inc., 2002.

[83] Docker Inc., “Docker: Accelerated container application development,”
Apr. 2024. [Online]. Available: https://www.docker.com/

APPENDIX A
DEPLOYMENT AND SECURITY HARDENING

IMPLEMENTATION

Fig. 6. Architecture of dockerized Generic CSP Honeypot

As we mentioned in Sec. II-A, high-interaction honeypots
such as HoneySat present a high risk of adversary takeover.
To mitigate this risk, we implemented HoneySat with two
sandboxing layers.

Virtual Machine. VMs provide the highest isolation level
among sandboxing techniques. We implemented HoneySat in
VM environments to leverage VMs’ robust security.

Containerization. After we completed HoneySat’s develop-
ment, we used Docker Compose [83] to containerize each of

TABLE VII
CORRESPONDENCE BETWEEN REAL SATELLITE MISSION COMPONENTS

AND HONEYSAT’S DESIGN COMPONENTS.

Segment Real Component HoneySat Component

Ground Remote Operation Protocols VNC, Telnet
Ground Mission Control Software Modified MCS
Ground Ground Station Control Software Gpredict
Ground Web Interface Web Interface
Ground Ground Station Radio Simulator
Space Flight Software F.S. Runtime + Services
Space On Board Computer Docker Container
Space Platform Satellite Simulator
Space Payload Satellite Simulator

our framework’s applications. Specifically, we created four dif-
ferent containers depicted in Fig. 6. Containerizing HoneySat
provides two benefits. First, it creates another sandboxing layer
that prevents adversaries from using our honeypot to access
the underlying system [27]. Second, it proves a convenient and
flexible way to deploy HoneySat.

APPENDIX B
INTERACTION SEQUENCES AND EXPLOITS

Table VIII includes all the interaction sequences and ex-
ploits we performed during the experiments in Sec. VI-B.

APPENDIX C
HARDWARE-IN-THE-LOOP EXPERIMENT RESULTS

Fig. 7 depicts a snippet of radio signal data which confirms
that the hardware-in-the-loop experiment in Sec VI-F was
successful. This was provided by the aerospace company.

Fig. 7. Waterfall plot that shows the radio signal spectrogram when HoneySat
communicated with SmallSat X. The signal on top (blue box) belongs to
the telecommand sent by HoneySat, and the signal on the bottom (red box)
belongs to the telemetry received from the SmallSat X.

16

https://www.uscc.gov/sites/default/files/annual_reports/annual_report_full_11.pdf
https://www.uscc.gov/sites/default/files/annual_reports/annual_report_full_11.pdf
https://gitlab.com/rccn
https://gitlab.com/rccn
https://doi.org/10.1145/3690134.3694813
https://www.usenix.org/conference/usenixsecurity24/presentation/lopez-morales
https://www.usenix.org/conference/usenixsecurity24/presentation/lopez-morales
https://arxiv.org/abs/2407.07292
https://public.ccsds.org/Pubs/133x0b2e1.pdf
https://www.docker.com/

TABLE VIII
TACTICS, TECHNIQUES AND PROCEDURES’ INTERACTION EXPERIMENTAL EXPLOITS.

Tactic Technique ID Subsystem Exploit

Reconnaissance Active Scanning (RF/Optical) T2001 Threat Model Limitation N.A.
Reconnaissance Gather Victim Mission Information T2002 Web Interface Use the Web Interface to gather mission documentation.
Reconnaissance Gather Victim Org Information T1591 Web interface Use the Web Interface to gather mission documentation.
Reconnaissance In orbit proximity intelligence T2029 Threat Model Limitation N.A.
Reconnaissance Passive Interception (RF/Optical) T2004 Threat Model Limitation N.A.
Reconnaissance Phishing for Information T1598 Tangential N.A.
Resource Development Acquire or Build Infrastructure T1583 Telnet interface Acquire ground segment using the Telnet service.
Resource Development Compromise Account T2038 Tangential N.A.
Resource Development Compromise Infrastructure T1584 Threat Model Limitation N.A.

Resource Development Develop/Obtain Capabilities T2007 Ground software.
Flight software.

Exploit OS, libraries or software vulnerabilities.
Deploy custom CSP application to forge TC/TM.

Initial Access Direct Attack to Space Communication Links T2008 Ground software.
Flight software.

Use the ground software to send/receive TC/TM.
Deploy custom CSP application to forge TC/TM.

Initial Access Ground Segment Compromise T2030 Telnet interface.
Ground software. Use the telnet interface to access the ground software.

Initial Access Supply Chain Compromise T1195 Tangential N.A.
Initial Access Trusted Relationship T2039 Threat Model Limitation N.A.
Initial Access Valid Credentials T2009 Tangential N.A.

Execution Modification of On Board Control Procedures modification T2010 Ground software.
Flight software.

Upload a script to the satellite software:
tm send file code.py 1
1: obc system python recv files/code.py

Execution Native API T1106 Ground software.
Flight software.

Execute shell commands or delete system files:
1: obc system <command>
1: obc rm -r $HOME

Execution Payload Exploitation to Execute Commands T2012 Tangential N.A.

Persistence Backdoor Installation T2014 Ground software.
Flight software.

Upload a script to the satellite software:
tm send file backdoor.sh 1
1: obc system ./recv files/backdoor.sh

Persistence Key Management Infrastructure Manipulation T2013 Tangential N.A.

Persistence Pre-OS Boot T1542 Ground software.
Flight software.

Use obc system, obc rm, obc mkdir commands.
Upload/modify an OS configuration file.
Start/stop/schedule execution of services/daemons.

Persistence Valid Credentials T2009 Tangential N.A.
Privilege Escalation Become Avionics Bus Master T2031 Implementation limitation N.A.

Privilege Escalation Escape to Host T1611 Docker.
Virtual machine. Escape the container/VM with previously crafted exploits.

Defense Evasion Impair Defenses T1562 Ground software.
Flight software.

Send commands to change operation mode.
1: drp set var name obc opmode 0

Defense Evasion Indicator Removal on Host T1070 Ground software.
Flight software.

Use commands to remove artifacts, logs, etc.:
1: obc rm <path>

Defense Evasion Masquerading T2040 Ground software.
Flight software.

Use commands to upload artifacts modify system settings:
tm send file artifact 1
1: obc mv artifact /etc/config/artifact

Defense Evasion Pre-OS Boot T2041 Ground software.
Flight software.

Use obc system, obc rm, obc mkdir commands.
Upload/modify an OS configuration file.
Start/stop/schedule execution of services/daemons.

Credential Access Adversary in the Middle T2042 Ground software.
Flight software. Deploy a CSP application to capture/inject CSP packets.

Credential Access Brute Force T2043 Ground software.
Flight software.

Brute force valid TC parameters:
1: obc ebf <KEY>

Credential Access Communication Link Sniffing T2044 Ground software. Escape the ground software or docker and run tcpdump.
Deploy a CSP application to capture/inject CSP packets.

Credential Access Retrieve TT&C master/session keys T2015 Tangential N.A.
Discovery Key Management Policy Discovery T2032 Tangential N.A.

Discovery Spacecraft’s Components Discovery T2034 Ground software.
Flight software.

Send TC to redirect satellite logs to ground segment:
1: log set 5 2 10

Discovery System Service Discovery T1007 Ground software.
Flight software.

Capture running processes information
1: obc system ps -aux >ps.log
1: tm send file 10 ps.log

Discovery Trust Relationships Discovery T2033 Tangential N.A.
Lateral Movement Compromise a Payload after compromising the main satellite platform T2045 Implementation Limitation N.A.

Lateral Movement Compromise of satellite hypervisors T2017 Docker.
Virtual machine. Escape the container/VM with previously crafted exploits.

Lateral Movement Compromise the satellite platform starting from a compromised payload. T2046 Implementation Limitation N.A.
Lateral Movement Lateral Movement via common Avionics Bus. T2016 Implementation Limitation N.A.

Collection Adversary in the Middle T1557 Ground software.
Flight software. Deploy a CSP application to capture/inject CSP packets.

Collection Data from link eavesdropping T2018 Ground software.
Flight software.

Escape the ground software or docker and run tcpdump.
Deploy a CSP application to capture/inject CSP packets.

Command and Control Protocol Tunnelling T2047 Ground software.
Flight software. Deploy a malicious application that sends data over CSP

Command and Control Telecommand a Spacecraft T2019 Ground software.
Flight software.

Use the ground software to send TC:
1: com ping 1

Command and Control TT&C over ISL T2048 Threat Model Limitation N.A.
Exfiltration Exfiltration Over Payload Channel T2021 Implementation Limitation N.A.

Exfiltration Exfiltration Over TM Channel T2022 Ground software.
Flight software. The attacker deploys a custom CSP node or a backdoor

Exfiltration Optical link modification T2037 Threat Model Limitation N.A.
Exfiltration RF modification T2036 Threat Model Limitation N.A.
Exfiltration Side-channel exfiltration T2035 Threat Model Limitation N.A.

Impact Data Manipulation T2054 Ground software.
Flight software.

Send TC to modify/reset TM database:
1: drp set var name drp ack ads 10000000
1: drp reset payload 1 1010
1: drp reset status 1010

Impact Ground Segment Jamming T2050 Threat Model Limitation N.A.

Impact Loss of spacecraft telecommanding T2055 Ground software.
Flight software.

Send TC to change communication parameters.
Modify network configuration in the ground station.

Impact Permanent loss to telecommand satellite T2027 Ground software.
Flight software.

Send TC to destroy filesystem:
1: obc system rm -rf –no-preserve-root /

Impact Resource damage T2028 Threat Model Limitation N.A.

Impact Resource Hijacking T1496 Ground software.
Flight software.

Upload a script to the satellite software:
tm send file code.py 1
1: obc system python recv files/code.py

Impact Saturation of Inter Satellite Links T2052 Threat Model Limitation N.A.

Impact Saturation/Exhaustion of Spacecraft Resources T2053 Ground software.
Flight software.

Send TC to create a reset loop:
1: fp set cmd dt 10 2147483647 10 obc reset

Impact Service Stop T1489 Ground software.
Flight software.

Send TC to launch a fork bomb or a reset loop
1: obc system :(){ :—:& };:
1: fp set cmd dt 10 2147483647 10 obc reset

Impact Spacecraft Jamming T2049 Threat Model Limitation N.A.

Impact Temporary loss to telecommand satellite T2026 Ground software.
Flight software.

Send TC to make the system unresponsive
1: obc system sleep 3600

Impact Transmitted Data Manipulation T2024 Threat Model Limitation N.A.

17

APPENDIX D
ARTIFACT APPENDIX

This appendix accompanies the paper “HoneySat: A
Network-based Satellite Honeypot Framework” and provides
detailed instructions for obtaining, installing, and evaluating
the artifact submitted for NDSS 2026 Artifact Evaluation.

A. Description & Requirements

Our artifact contains a Dockerized version of our honeypot
framework, along with all the necessary components to boot-
strap honeypots for satellite missions supporting two different
space protocol stacks (CSP and CCSDS/YAMCS). To aid in
evaluations, we also included utility scripts that facilitate the
evaluation of data provided by the honeypot.

1) How to access: The artifact can be found at https://doi.
org/10.5281/zenodo.17871431.

2) Hardware dependencies:
• 25GB of disk space
• at least 4 CPU cores
• 8GB RAM
3) Software dependencies: Most Linux distributions will

work. We verified the artifact on Ubuntu 24.04.2 LTS.
• Docker (with compose and related components, we

recommend to follow https://docs.docker.com/engine/
install/)

• Python 3.12 (more recent versions may also be compati-
ble)

• Python virtual environment
• Bash
• Telnet client
• Any modern web browser
4) Benchmarks: No External Benchmarks required.

B. Artifact Installation & Configuration

a) Extract files: Extract files from tar file downloaded
from link:

tar xzpvf ndss-artifact-eval.tar.gz

b) Repository Layout: The root directory contains two
subdirectories:
• deployment/: Dockerized HoneySat services with de-

tailed setup documentation.
• evaluation/: Python utilities and scripts to help evaluate

HoneySat’s capabilities.
The evaluation utilities require Python 3.12 and the packages
listed in evaluation/requirements.txt.

c) Create and Activate a Python Virtual Environment.:
From the repository root:

python3 -m venv .
source bin/activate

d) Install Python Dependencies: Install the required
packages for the evaluation utilities:

python3 -m pip install -r evaluation/
requirements.txt

e) Configure Docker user: We need to add the current
user to the Docker group to avoid using sudo with Docker all
the time.

sudo usermod -aG docker $USER
sudo reboot now

f) Start the Honeypot Services.: All remaining setup is
handled by Docker containers. You can either:
• Run the provided convenience scripts (see “Quick Start for

Pass Simulations” below), or
• Follow the guide in deployment/README.md to bring

up the services via Docker Compose.
g) Quick Start for Pass Simulations: A key HoneySat

feature is its realistic communication windows: the satellite
is reachable only while passing over a ground station. Many
experiments benefit from a setup in which the satellite be-
comes reachable immediately or within a short time window.
We provide two helper scripts that compute a suitable ground-
station location along the satellite’s predicted ground track so
that a pass occurs shortly after startup. Each script builds and
starts the necessary Docker Compose services and will shut
them down cleanly on CTRL+C.
• CSP-based honeypot:

./evaluation/experiment-1/run-experiment-csp.
sh

This script builds and starts a CSP honeypot instance, and
positions the ground station to enable communication almost
immediately, allowing you to observe how an attacker would
perceive a pass without waiting for a real one.

• CCSDS/YAMCS-based honeypot:
./evaluation/experiment-1/run-experiment-

ccsds.sh

This script builds and starts a CCSDS and YAMCS-based
honeypot instance, using the same predicted ground-station
placement to trigger an imminent pass.

Please proceed with the experiments described in the fol-
lowing sections, or consult deployment/README.md for
additional configuration details.

C. Experiment Workflow

The following experiments all involve starting the honeypot
system and interacting with it in some way (either pro-
grammatically or manually). The workflow typically involves
issuing a startup command and then performing tasks outlined
in the experiment description. For some tasks, timing matters;
for example, the TCs have to be issued while the simulated
satellite is reachable via the simulated ground station.

D. Major Claims

We make the following claims in our paper
• (C1): HONEYSAT can be used to deceive adversaries and

log activities.
– HoneySat’s simulator provides believable TM (Exper-

iment 1.1)

18

https://doi.org/10.5281/zenodo.17871431
https://doi.org/10.5281/zenodo.17871431
https://docs.docker.com/engine/install/
https://docs.docker.com/engine/install/

– HoneySat has realistic communication windows (Ex-
periment 1.2)

– HoneySat provides interaction capabilities (process TC,
provide TM) (experiment 1.3)

– HoneySat Logs interaction details (Experiment 1.4)
• (C2): HONEYSAT Is extensible and supports two different

protocol ecosystems
– HoneySat is configurable (Experiment 2)

E. Evaluation

1) Experiment 1 (E1.1): [Believable TM/TC] [10 human-
minutes]

Goal. Demonstrate that HoneySat produces believable
telemetry (TM) in response to telecommands (TC) for a
CCSDS/YAMCS setup.

Preparation. Ensure dependencies are installed as listed
above.

Execution.
./evaluation/experiment-1/run-experiment-ccsds.

sh

After the script completes and prints telemetry values, you
may also inspect the telemetry via the YAMCS web interface.

Expected Results. Believable current, voltage, and temper-
ature values for the selected battery configuration:
• Voltage: 8000 mV (normal test case)
• Temperature: 30 °C
• Current draw: 74 mA

2) Experiment 1.2 (E1.2): [Believable passes] [20 human-
minutes]

Goal. Show that HoneySat enforces realistic communication
windows: the satellite is reachable only during predicted passes
over a ground station.

Preparation.
./evaluation/experiment-1/run-experiment-csp.sh

This positions the ground station so that a pass begins ap-
proximately 2-3 minutes after startup (adjustable), and starts
all required services.

Execution.
1) Open the web interface at http://localhost:80. Log in with

username admin and password admin. Click the ground-
station icon and view the next predicted passes. The pass
should soon show as “ongoing.”

2) In a separate terminal, connect to the CSP telnet interface
and activate it:

telnet localhost 24
In the telnet session:
activate

3) Probe satellite reachability every few seconds:
1: com_ping 10

Expected Results. The satellite responds to pings only dur-
ing the predicted pass and not before or after. Responses will
indicate the expected addressing (source address 1, destination
address 10).

3) Experiment 1.3 (E1.3): [Simulate Interaction] [15
human-minutes]

Goal. Demonstrate interactive capabilities once the satellite
becomes reachable.

Preparation. Repeat the setup from Experiment 1.2. Re-
view the command reference in the experiment-1.3 directory.

Execution. After the satellite becomes reachable (as verified
in Experiment 1.2), issue commands via the telnet interface.
For example, to execute arbitrary shell commands on the OBC:

1: obc_system [shell command]

Expected Results. The experimenter can successfully ex-
ecute arbitrary shell commands via obc_system while the
satellite is reachable.

4) Experiment 1.4 (E1.4): [View logging capabilities] [5
human-minutes]

Goal. Verify that HoneySat logs interactions and relevant
parameters.

Preparation. Keep a HoneySat CSP instance running (e.g.,
from Experiment 1.3), optionally after interacting with it.

Execution.
python3 ./evaluation/experiment-1/

python_dump_mongodb/dump_mongodb.py

Alternatively, connect to the MongoDB instance with a
database client of your choice.

Expected Results. The script prints MongoDB contents to
stdout, showing logged parameters and interaction details.

5) Experiment 2 (E2): [Customization]
Goal. Demonstrate HoneySat’s configurability across pro-

tocol stacks and scenarios.
Preparation. Navigate to ./evaluation/experiment-2.
Execution.

1) Create a baseline customization:
python3 ./honeysat.py [csp|ccsds] "{

satellite name}" "{location}"

For example:
python3 ./honeysat.py csp "BEESAT" "Berlin"

2) Start services with the generated configuration (or configs
in this directory):

python3 ./honeysat.py start [csp|ccsds] "{
satellite name}" "{location}"

For example:
python3 ./honeysat.py start csp "BEESAT" "

Berlin"

3) When finished, stop the services:
python3 ./honeysat.py stop [csp|ccsds]

For example:
python3 ./honeysat.py stop csp

Expected Results. HoneySat can be configured with rela-
tively low time effort to reflect different satellites, locations,
and protocol ecosystems.

19

http://localhost:80

	Introduction
	Background
	Types of Honeypots
	Honeypot's State of the Art
	Anatomy of a Satellite Mission
	Satellite Architecture
	Small Satellite Protocol Ecosystems
	Space Systems' Tactics, Techniques and Procedures (TTPs)

	Threat Model
	HoneySat Framework Design
	HoneySat's Design Objectives
	HoneySat's Design Principles
	Ground Segment Design
	Space Segment Design
	Theory of Operation

	HoneySat's Implementation
	Satellite Simulator Implementation
	Generic CSP Mission Honeypot
	Ground Segment Implementation
	Space Segment Implementation

	Summary of Existing and Newly Developed Software

	Evaluation
	Experimental Questions
	TTP Interaction Experiment
	SmallSat Operators Survey
	Survey Structure
	Participants
	Methodology and Key Results

	Internet Interaction Experiment
	Case Study: Extending HoneySat to CCSDS Ecosystem
	Case Study: Hardware-in-the-loop Experiment

	Discussion and Future Work
	Initial Satellite Honeypot Anti-Detection Techniques

	Conclusion
	Ethical Considerations
	Satellite Operators User Study
	Honeypot Deployment Experiment

	References
	Appendix A: Deployment and Security Hardening Implementation
	Appendix B: Interaction Sequences and Exploits
	Appendix C: Hardware-in-the-loop Experiment Results
	Appendix D: Artifact Appendix
	Description & Requirements
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Artifact Installation & Configuration
	Experiment Workflow
	Major Claims
	Evaluation
	Experiment 1 (E1.1)
	Experiment 1.2 (E1.2)
	Experiment 1.3 (E1.3)
	Experiment 1.4 (E1.4)
	Experiment 2 (E2)

