
Mutated Policies: Towards Proactive

A�ribute-based Defenses for Access Control

Carlos E. Rubio-Medrano, Josephine Lamp, Adam Doupé, Ziming Zhao and Gail-Joon Ahn
The Center for Cybersecurity and Digital Forensics

Arizona State University

[crubiome,jalamp,doupe,zzhao30,gahn]@asu.edu

ABSTRACT

Recently, both academia and industry have recognized the need for

leveraging real-time information for the purposes of specifying, en-

forcing and maintaining rich and �exible authorization policies. In

such a context, security-related properties, a.k.a., attributes, have

been recognized as a convenient abstraction for providing a well-

de�ned representation of such information, allowing for them to

be created and exchanged by di�erent independently-run organi-

zational domains for authorization purposes. However, attackers

may attempt to compromise the way attributes are generated and

communicated by recurring to hacking techniques, e.g., forgery, in

an e�ort to bypass authorization policies and their corresponding

enforcement mechanisms and gain unintended access to sensitive

resources as a result.

In this paper, we propose a novel technique that allows for enter-

prises to pro-actively collect attributes from the di�erent entities in-

volved in the access request process, e.g., users, subjects, protected

resources, and running environments. After the collection, we aim

to carefully select the attributes that uniquely identify the afore-

mentioned entities, and randomly mutate the original access poli-

cies over time by adding additional policy rules constructed from

the newly-identi�ed attributes. This way, even when attackers are

able to compromise the original attributes, our mutated policies

may o�er an additional layer of protection to deter ongoing and

future attacks. We present the rationale and experimental results

supporting our proposal, which provide evidence of its suitability

for being deployed in practice.

1 INTRODUCTION

Recently, emerging authorization paradigms have been introduced

to leverage information collected in real-time for the purposes of

access mediation, in an e�ort to provide enhanced �exibility for

crafting, enforcing and maintaining authorization policies. Within

those proposals, attribute-based access control (ABAC) [5] has at-

tracted the interest of both academia and industry due to its sup-

port for representing such real-time information by means of at-

tributes: security-relevant properties and characteristics that may

be originated within di�erent security domains, which in turnmay

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full cita-
tion on the �rst page. Copyrights for components of this work owned by others than
ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.

MTD’17, October 30, 2017, Dallas, TX, USA

© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5176-8/17/10. . . $15.00
https://doi.org/10.1145/3140549.3140553

be implemented by independently-run organizations. In such a con-

text, collaborating organizationsmay leverage attribute-based poli-

cies for mediating access to a set of shared resources, allowing for

entities, e.g., users, within the context of one organization to access

the resources providedwithin the context of another one. However,

while highly-�exible and convenient, such a scheme may depend

on each participating organization being fully-capable of provision-

ing: locating, producing and communicating attributes in a secure

and e�cient manner. When such an attribute provisioning process

is compromised, undesired consequences may be triggered as a re-

sult. As an example, a successful hacking incident in one partici-

pating organization may result in the security of the overall access

mediation framework being a�ected, as controlling the creation

and distribution of attributes may allow attackers to fully bypass

the authorization enforcement mechanisms deployed by both orga-

nizations, thus ultimately resulting in unwanted access to sensitive

resources.

To address this problem, we present an approach inspired by

moving target defense (MTD) [7], a promising defensive paradigm

based on the idea of proactively changing, e.g.,moving, system con-

�gurations in an e�ort to deter potential attacks. The key idea of

MTD is to increase the di�culty and cost to an attacker to per-

form a successful attack. In our approach, we aim to analyze at-

tributes that are collected from both runtime traces of mission-

critical applications as well as from diverse available sources, and

are ultimately combined into a dataset to be referred to as the at-

tribute bag. Taking an original authorization policy as an input,

our approach �rst obtains the original attributes listed in the pol-

icy and inspects the attribute bag to locate attributes that are corre-

lated to the original ones by leveraging well-established machine

learning techniques such as association analysis [15]. Later, these

newly-extracted attributes are used to enhance the original policy,

by adding additional constraints to existing policy rules, thus pro-

ducing a new mutated policy that is then forwarded to the access

mediation infrastructure for enforcement.

The intuition behind our approach is that the entities involved

in a given access request, e.g., end-users and protected resources,

typically exhibit additional attributes besides the ones in the origi-

nal policy. In our system, if the original attributes are compromised,

the newly-extracted ones, which we assume stay uncompromised,

may still deter the unintended exploitation of the original policy.

Furthermore, the attacker does not know which of the additional

attributes will be checked, which will increase the cost and time

burden on the attacker to achieve an unauthorized access. In addi-

tion, we aim to mitigate the harm to usability, such as end-users no

longer able to access previously-available resources, by striving to

obtain a high degree of correlation between the original attributes

https://doi.org/10.1145/3140549.3140553

and the newly-extracted ones. With this in mind, this paper pro-

vides the following contributions:

(1) We introduce a novel moving target defense-based approach

to provide extended security protection based on access con-

trol policies by identifying the entities involved in access re-

quests via the attributes they depict, resulting in proactively

expanding an original policy;

(2) We implement our approach and evaluate its e�ectiveness

and e�ciency on various sample policies. Our experimental

results show that correlated attributes do exist in real-life

policies and that correlated attributes can be e�ciently dis-

covered and used to create mutated policies for enhanced

security protection.

This paper is organized as follows: we start by brie�y reviewing

some important background topics, along with a running example

and some other key considerations for our approach in Section 2.

We then elaborate on the problem being addressed in this paper

in Section 3. Our proposal is later described in Section 4, and we

present the results of our experimental evaluation in Section 5. We

compare our approach with related work in Section 6 and present

some discussion as well as our plans for future work in Section 7.

Finally, we present our concluding remarks in Section 8.

2 BACKGROUND

2.1 Attribute-based Access Control

In attribute-based access control (ABAC) [5] a request is granted

upon the satisfaction of constraints involving properties, charac-

teristics, or traits of subjects, objects, and even environment condi-

tions that are relevant under a given security context, also known

as attributes. Such attributes are managed and provisioned by or-

ganizations/ institutions a.k.a., attribute authorities in [5], who are

in charge of de�ning, creating and assigning them to access enti-

ties. Attributes may be in turn leveraged by policy makers, who

are in charge of crafting policies by establishing relationships be-

tween access entities, attributes and permissions. Following the

description provided by the U.S. National Institute of Standards

and Technology (NIST) [5], dedicated infrastructures may be in-

troduced in the foreseeable future allowing for attributes originat-

ing from di�erent authorities to become relevant under the orga-

nizational domain the policy makers belong to, depicting an enter-

prise scenario. This scenario is based on the concept of collabora-

tion between di�erent organizations for provisioning (e.g., locating

and communicating) attributes at runtime, thus potentially intro-

ducing enhanced �exibility, convenience and e�ciency for policy

speci�cation and enforcement.

Running Example. Let us assume a sample ABAC policy that

is de�ned in the context of electronic health records (EHRs) [8], a

technology intended to increase the e�ciency of healthcare orga-

nizations, thus leading to improved continuity and coordination of

care. Such a policy grants access to the EHRs of a given patient to

all sta�members whose attribute labeled as Sta� IDmatches one of

the attributes values listed in a prede�ned set. Fig. 1 shows a sam-

ple dataset, hereafter to be referred to as an attribute bag, which is

constructed by combining data obtained from access logs derived

from enforcing our sample policy at runtime as well as attributes

collected from di�erent authorities. As an example, the data record

Figure 1: A sample attribute bag based on EHRs depicting

attributes in the original policy (green, straight border line),

correlated attributes (orange, dotted border line), as well as

non-correlated ones (yellow, vertical lines).

depicted in the �rst row shows an access request issued by a sta�

member with the attribute <Sta� ID, String, A11235>. Assuming

such value was not listed in any rule included in our sample policy,

this request was therefore denied, as shown by the value of theDe-

cision attribute set to FALSE in the last column. For illustrative pur-

poses, our attribute bag contains an additional arti�cially-created

attributeMatch IDs, which is set to the value of TRUE when a rule

in our sample policy contained a value matching the one de�ned

for the aforementioned Sta� ID attribute. Otherwise, the value for

the Match IDs attribute is set to FALSE. Other attributes shown in

Fig. 1 will be further discussed, along with their corresponding col-

oring scheme, in Section 4.

2.2 Association Analysis

Association analysis [15] is a method for �nding relationships be-

tween data items in large sets, commonly referred as association

rules or simply as associations in the rest of this paper. Associations

of the form A → B denote a relationship between the data items

labeled as A and B, e.g., data records containing A are likely to con-

tain B as well. It is important to note that associations do not imply

causality; rather, they suggest a statistical relationship between the

items. The strength of a given association can be measured using

the metrics known as support and con�dence. Support measures

the number of data records that contain the items listed in the asso-

ciation and can be used to eliminate uninteresting associations, as

well as to enable the e�cient discovery of associations within large

data sets. Support is de�ned as s(A→ B) = σ (A ∪ B)/ N, where σ (A

∪ B) stands for the count of the data records where A and B appear

together, and N stands for the count of all records in the dataset.

As an example, following Fig. 1, s(Match IDs = TRUE→ Decision

= TRUE) can be calculated as σ (Match IDs = TRUE ∪ Decision

= TRUE)/10 = 7/10 = 0.70. Con�dence determines how often items

in one subset of records appear in another subset and enables the

measurement of reliability of inference implied by a given associ-

ation. It is de�ned as c(A→ B) = σ (A ∪ B)/σ (A), where σ (A ∪ B)

stands as described before and σ (A) stands for the count of records

that contain A. Using Fig. 1 as an example again, c(Match IDs =

TRUE → Decision = TRUE) = σ (Match IDs = TRUE ∪ Decision

= TRUE)/σ (Match IDs = TRUE) = 7/7 = 1.0.

3 ATTACK MODEL AND ASSUMPTIONS

As described in Section 2, ABAC relies on specifying, collecting

and processing attributes belonging to access entities involved in a

given request, e.g., users, protected resources and the environment.

In such a context, the unintended assignment of such attributes to

entities may completely compromise the security of the access me-

diation process. Based on this, we assume an attack model where

the attributes listed in a given policy become compromised by an

attacker, for example, by creating an unintended attribute-access

entity assignment, or by deliberately manipulating the value or set

of values depicted by a correctly-assigned attribute. The way an at-

tacker may be able to compromise a given attribute may include,

but may not be limited to the following: an unintended software

error, forgery or a hacking incident compromising the infrastruc-

ture where attributes are created and assigned to entities, e.g., an

attribute authority.

For the purposes of this paper, we assume the following: �rst,

we devise an attribute collection model in which attributes origi-

nated from di�erent authorities are leveraged for the purposes of

policy crafting, and in which data containing attribute-based infor-

mation is available for analysis. In the context of the application

domain depicted in our running example, data collection may in-

clude a preprocessing step in which data from the access logs is

combined with information extracted from EHRs themselves and

any supporting platforms such as clouds or operative systems. As

an example, Fig. 1 shows data collected for each access request

made in the context of an EHR. For each request, the following

items are shown: the result of evaluating the request, and a de-

scription of the collected attributes and their corresponding values,

a.k.a., the attribute bag. Second, we assume that the software frame-

work handling the speci�cation and runtime evaluation of autho-

rization policies, as well as the softwaremodules implementing our

approach (including the collection procedure described above), are

out of reach for an attacker. As an example, even when a given au-

thorization policy, along with its listed attributes, may be known

to the attacker, he/she has no way to deliberately change its con-

tents, either by removing the policy as a whole or by adding or

removing rules at will.

4 OUR APPROACH: PROACTIVE
ATTRIBUTE-BASED DEFENSES

As introduced in Section 1, our approach, shown in Fig. 2, is in-

tended to dynamically expand access control policies by detecting

and incorporating the attributes that are strongly correlated to the

entities involved in access requests. Bymutating policies, an access

control system is expected to cope with attacks such as the ones

mentioned in Section 3, including zero-day ones which have not

been previously reported or detected by security o�cials. In this

section, we �rst describe our approach by extending the descrip-

tion of ABAC introduced in Section 2.1. Then, we provide an infor-

mal description of our ideas by leveraging our running example in

Figure 2: A graphical depiction of our approach based on the

a�ribute bag shown in Fig. 1: the original policy, labeled as

PO , is de�ned over a set of original attributes obtained from

both the requesting sta� member (ID) and the EHRs them-

selves (ID). Later, an additional attribute L, obtained from an

environmental source, is found to be correlated to the origi-

nal ones, and is used to craft amutated policy PN .

Section 4.2, and move on to provide a more detailed description in

Section 4.3 by leveraging the association analysis techniques dis-

cussed in Section 2.2.

4.1 Correlation-based Policy Mutation

Describing ABAC. We start the description of our approach by

�rst extending the discussion on ABAC introduced in Section 2.1.

In such a model, an ABAC policy PO can be represented by means

of the permission assignment (PA) and attribute assignment (AA)

relations. As an example, an attribute a that is required for grant-

ing a given permission p can be modeled as an entry of the form

(a,p) in the PA relation. In addition, an access entity u, e.g., an end-

user, is assigned an attribute a if there exists an entry of the form

(u,a) in the AA relation. In such a context, the auxiliary function

assigned(u,a) returns true if and only if an access entity u is as-

signed an attribute labeled as a, e.g., there is an entry of the form

(u,a) in AA, and returns false otherwise. For a given access entity

u, the set of assigned attributes can be obtained by inspecting the

attribute bag collected for it at runtime, e.g., assigned(u,a) may re-

turn true if a is contained within u’s bag. Conversely, the auxiliary

function related(a,p) returns true if and only if the aforementioned

attribute a is related to the requested permission p, e.g., there ex-

ists an entry of the form (a,p) in PA, and returns false otherwise.

With this in mind, the authorization process for a user entity u re-

questing a permission p can be modeled by means of a function

called granted(u,p), which returns true if there exists an attribute

a such that both assigned(u,a) and related(a,p) return true, and re-

turns false otherwise.

Attribute-based Populations. In the model just described, a

policy rule r ∈ PO may allow for a constraint-based speci�cation

of the set of attributes Sr ∈ A that are related to a given permis-

sion p, e.g., of the set of tuples in PA relating Sr with p. Similarly,

a set of access entities E can be further constrained into di�erent

subsets, also known as populations, following the attribute assign-

ments de�ned in the AA relation. As an example,Ua ⊆ E identi�es

the population of users that are assigned the attribute a, e.g., all

Algorithm 1 Correlated-based Policy Mutation

Require: An original policy PO , an attribute bag A

Ensure: A mutated policy PN
1: PN ← ∅

2: R ← getRulesFromPolicy(PO)

3: for all ri ∈ R do

4: Sr ← getAttributesFromRule(ri)

5: Cr ← �ndCorrelatedAttributes(Sr , A)

6: r′i ← getRandomMutatedRule(ri , Cr)

7: PN ← PN ∪ ri ′

8: end for

9: return PN

users u for which the evaluation of assigned(u,a) returns true. In

our approach, we extend this notion by taking as an input an orig-

inal rule r and retrieving the set of attributes Sr ∈ A that are listed

in it to identify a populationUSr ∈ E.

Policy Mutation.With this in mind, we aim to identify a set of

attributesCr that are assigned to the entity or entities holding the

ones contained Sr , that is, for each attribute c inCr , there exists an

access entity u such that both (u,c) and (u,a) exist in AA, for some

attribute a in Ur . This way, we aim to identify a populationUCr ⊆

E such that USr = UCr for the sets of attributes labeled as Sr and

Cr . Later on, following the model for ABAC described before in

this section, we also aim to update the PA relation by inserting a

new rule r ′ such that for a given c ∈ Cr , a new tuple (c, p) is added

to PA, thus creating a mutated policy as a consequence.

AlgorithmDescription.Algorithm 1 contains a description of

the approach just described: initially, we model an original access

control policy PO as a set of constraint-based rules R = {r1, r2, r3,

..., rn } for some n > 0 (Lines 1-2). Then, for each rule r ∈ R, we

introduce the set Sr of attributes that are listed in it (Line 4). In

addition, we also model the attribute bag as described before as a

set of attributes A such that A ∩ Sr , ∅ for all r ∈ R. Given the

original policy PO , our approach then aims to produce a mutated

policy PN as follows: for each rule r ∈ R, we locate the set of at-

tributes Cr = {c1, c2, ... cp } ⊆ A, Cr , Sr , that are correlated to

the set of attributes Sr (Line 5). Then, r may become a new rule

r ′ by randomly choosing a subset c ∈ Cr , and adding it to the set

of original attributes Sr , such that Sr ′ = Sr ∪ c 1 (Line 6). Later,

the set of modi�ed rules R′ = {r′1, r
′
2, ... r

′
n } is put together to

create the new mutated policy PN (Lines 7 and 9), which is then

forwarded to a policy evaluation module for further enforcement.

This way, PN is said to expand the original PO policy by including

rules that depict additional correlated attributes besides the orig-

inal ones. We repeat the above procedure in an e�ort to produce

many di�erent policy mutations. For such a purpose, an interac-

tive approach may randomly produce modi�ed rules by selecting

only a subset of the set Cr of correlated attributes each time, in

such a way that the resulting rules may vary from time to time.

Recall that correlated attributes appearing in previous mutations

may be selected to appear once again in a new mutation in case

they are randomly selected by the auxiliary procedure shown in

Line 6. In addition, new correlated attributes may be collected in

1In case Cr = ∅, then r′ = r.

the attribute bag, thus possibly producing di�erent mutated poli-

cies as a result. In general, if n correlated attributes are present in

an attribute bag, then 2n possible combinations of them may be

used to produce mutated policies.

AddressingMTDGoals.Returning to the discussion presented

before in this section, in an ideal case for our policy mutation ap-

proach, populationsUSr and UCr , which de�ne the set of original

and correlated attributes respectively, should be equivalent to each

other. However, such a USr = UCr correspondence is not always

guaranteed to appear in practice. In such a context, the following

cases may arise:

(1) In the USr ⊂ UCr case, as the size of the population de�ned

for the correlated attributes exceeds the one of the original

ones, a potential safety problem arises, as the resulting rule

r ′ may be more relaxed than the original, thus potentially

resulting inmembers of a populationnot originally included

in r being granted access to a protected resource by means

of r ′;

(2) In the UCr ⊂ USr case, the size of the population de�ned

by the original attributes is larger than the size of the pop-

ulation de�ned by the correlated ones. In such a case, the

newly introduced rule r ′ is likely to be more restrictive than

its original counterpart r, e.g., access entities included in the

population de�ned byUSr may not be covered by the popu-

lation de�ned by means ofUCr , thus resulting in a usability

problem,which represents a potential harm for the adoption

of MTD-based techniques;

(3) For completeness, in the UCr 1 USr ,USr 1 UCr , and UCr ∩

USr , ∅ cases, both safety and usability problems arise, fol-

lowing the descriptions mentioned above.

Hence, our approach is therefore intended to minimize both the

harm to usability as well as the safety concerns of our proposed

mutated policies. Strictly speaking, when producing amutated rule

r ′, we aim to identify the two populations USr and UCr in such

a way that the following function properties are set to minimal

values:

De�nition 4.1. f-usability = | USr | - | UCr |

De�nition 4.2. f-safety = | UCr | - | USr |

Having said this, our approach allows to properly balance such

safety and usability functions by introducing numerical thresholds

depicting acceptable minimal values for the two, thus allowing for

policymakers to further customize our approach depending on the

context of their own security and application domains, as it will be

later discussed in Section 4.2. In the next section, we describe our

approach to get an estimate of the aforementioned populations by

inspecting our proposed attribute bag using the association analysis

techniques introduced in Section 2.2.

4.2 Finding Correlated Attributes

Green Attributes. Following the description for policy mutation

described before, �nding the set Cr of correlated attributes is core

to our approach. For such a purpose, we aim to �nd patterns re-

lating the attributes in the attribute bag with the ones contained

in the set Sr of original attributes. For illustrative purposes, as-

sume the sample original policy and the attribute bag data shown

in Fig. 1, which were introduced in Section 2 and depict a single

rule granting access to the EHRs of a given patient if the value of

attribute Sta� ID as shown by the requesting end-user is equal to a

value contained in a prede�ned access control list. Such a relation-

ship has been captured in the Match IDs attribute that is included

in Fig. 1. Our attribute correlation approach can be then described

as follows: we start by �rst �nding the relationship between the at-

tributes in the original set Sr , e.g., Sta� ID and Match IDs, and the

access decision with a value of true, in an e�ort to identify within

the data records depicting the attribute bag, the ones that belong to

the requested access being granted according to our original policy.

In Fig. 1, such relation is represented by records with cells colored

in green with black border line and represent the population USr
described in Section 4.1.

Orange Attributes. Next, we strive to �nd relationships be-

tween the original set Sr (green), as identi�ed by the previous step,

and some other attributes in the attribute bag. As an example, in

Fig. 1, the value of attribute Location is the same when the value of

the attribute Match IDs is true and the access decision depicts the

value of true. Such a relationship is displayed in Fig. 1 in the orange

color and dotted border line. As mentioned before, in order for this

step to be meaningful for the purposes of our approach, this rela-

tionship should be as strong as possible, that is, the vast majority

of the records depicting the original attributes should also depict

the newly-correlated ones. Referring back to Fig. 1, the number of

records containing cells colored in green and the ones containing

cells in orange should be the same or stay within a close margin

with respect to the total of data records in the attribute bag.

Yellow Attributes. Next, we strive to identify the relationship

between the candidate orange attributes and the false access deci-

sion value, in an e�ort to make sure these newly-discovered cor-

related attributes are not shared by entities getting the false ac-

cess decision in the attribute bag data. The intuition behind this is

that the orange attributes should only be assigned to the entities

with legitimate access according to our original policy. Such a rela-

tionship is represented by cells depicting the yellow coloring with

vertical lines in Fig. 1. With all this in mind, our approach should

identify the candidate orange attributes in such a way that their

relation to the original ones (green) is strong, whereas the relation

with the yellow ones is kept to a minimum for safety and usability

purposes, respectively. Ideally, the number of records with cells in

yellow should be minimal in respect to the number of records de-

picting the green and orange colorings, e.g., close to zero, as a large

number of such yellow records would imply a potential security

vulnerability. If such conditions are met, the combination of the

records depicting the orange and yellow records represent theUCr
population described in Section 4.1 and the orange attributes are

said to depict the set Cr , which can be then used to create muta-

tions of the original policy. Following our running example, the

newly-discovered orange attribute Location would be then used to

create a new rule that, besides comparing the value Sta� ID at-

tribute with the ones contained in a prede�ned access list, also re-

quires the location of the device initiating the request to be equal

to the value ER.

Algorithm Description. Algorithm 2 shows a pseudo-code de-

scription for �nding orange attributes by leveraging association

analysis [15]. Such an algorithm takes as an input the set Sr of

Algorithm 2 Finding Correlated Attributes

Require: A set Sr of original attributes, an attribute bag A, a us-

ability threshold u_t and a safety threshold s_t

Ensure: A set Cr of correlated attributes

1: Cr ← ∅

2: G ← getGreenAssociations(Sr , A)

3: for all д ∈ G do

4: if c(д) = 1.0 then

5: O ← getOrangeAssociations(д, A)

6: for all o ∈ O do

7: usability← (s(д) - s(o)) / s(д)

8: if c(o) = 1.0 and (usability ≤ u_t) then

9: Y ← getYellowAssociations(д, o, A)

10: if size(Y) , 0 then

11: for all y ∈ Y do

12: if c(y) = 1.0 then

13: sa f ety← (s(y) - s(o)) / s(y)

14: if sa f ety ≤ s_t then

15: Cr ← Cr ∪ getAttributes(o)

16: end if

17: end if

18: end for

19: else

20: Cr ← Cr ∪ getAttributes(o)

21: end if

22: end if

23: end for

24: end if

25: end for

26: return Cr

attributes listed in a given policy rule r, the attribute bag identi-

�ed as A, as well as a pair of numeric thresholds labeled as usabil-

ity (u_f) and safety (s_t) respectively. The usability threshold is

intended to provide an indication of the degree of similarity de-

sired between the number of records depicting green and orange

attributes. As mentioned before, an ideal case would consider the

two populations represented by the green and orange attributes be-

ing the same, thus implying a threshold value of zero. However, in

practice, such a requirement can be relaxed up to a certain prede-

�ned value greater than zero that may be dependent on the applica-

tion domain within a certain level of tolerance. In a similar fashion,

the safety threshold provides an indication of the desired relation-

ship between the number of records depicting potential orange at-

tributes and the records depicting yellow ones. Once again, an ideal

situation would consider the number of records containing yellow

attributes to be zero. However, such a requirement may be relaxed

up to a certain positive threshold depending on the application do-

main, assuming the security o�cials implementing our approach

are knowledgeably willing to do so. Therefore, these thresholds

then provide a way for estimating the usability and safety func-

tions described in De�nitions 4.1 and 4.2 as mentioned before.

Algorithm 2 then proceeds as follows: we start by leveraging as-

sociation mining techniques to identify the ones relating both the

original (green) set of attributes and the positive access decision

case (Line 2). Following the naming convention introduced earlier

in this section, we refer to those associations as green ones. As an

example, following the notation introduced in Section 2, our run-

ning example would depict a green association of the form Match

IDs = True→ Decision=True. Details on the generation of all color-

named associations mentioned in Algorithm 2 are to be discussed

in Section 4.3. Next, we inspect each of the produced green associa-

tions in order to locate potential orange attributes that are depicted

by the namesake associations (Line 5). Following our running ex-

ample, an orange association of the form Match IDs=True ∧ Loca-

tion=ER→ Decision=True will be produced.

In the next step, we explore each of the orange associations in

order to locate attributes that have a strong correlation with the

green ones (Lines 6-23). In such a context, two veri�cations are per-

formed in lines 7-8: �rst, we check that the con�dence level of the

two inspected associations, either green and orange, are equal to

1.0. As it will be detailed in Section 4.3, having a con�dence level

of such a value is important for our approach. Second, we calcu-

late a usability index based on the two current associations being

inspected, and we compare it against the prede�ned threshold pro-

vided as an argument to our algorithm. If both veri�cations pass,

that is, there is a strong correlation between both associations and

their involved attributes, we continue our analysis in lines 9-22.

Recall from a previous description that our approach also aims

to detect our so-called yellow attributes, which may potentially

deviate in a security vulnerability as they may imply our newly-

discovered orange attributes are also shared by entities not getting

access granted to the protected resources. With this in mind, we

then �nd so-called yellow associations depicting our current or-

ange ones being processed (Line 9). Continuing with our running

example, we obtain a yellow association of the form Location=ER

→ Decision=False. For each obtained yellow association we calcu-

late the safety index and compare it against the prede�ned safety

threshold that was also provided as an input to our algorithm. In

case there is a positive veri�cation, the attributes in the current

orange association under inspection are added to the resulting set

by means of the utility function getAttributes (Lines 12-17). Finally,

in case no yellow associations were initially obtained, we move on

to directly add the attributes in the current orange association to

our resulting set in line 20.

4.3 Leveraging Attribute-based Associations

In this section, we detail the rationale behind the getGreenAssoci-

ations, getOrangeAssociations and getYellowAssociations, as well as

an insight on the calculation of con�dence levels as depicted in

Algorithm 2.

Green Associations. As it was hinted earlier, the supporting

function getGreenAssociations obtains our proposed green associa-

tions by initially processing the original attribute bag and selecting

the ones that contain both the attributes as listed in the original

policy as well as the access decision attribute depicting the value

of True. For readability purposes, we denote green associations as

GREEN→ DECISION=True. In our approach, we combine the di�er-

ent attributes as listed in an original policy rule into the aforemen-

tioned GREEN set. For instance, assuming attributes labeled as g1,

g2 and g3, we would inspect the original set of associations derived

from the attribute bag in order to select the one listed as {g1 ∧ g2

∧ g3}→ DECISION=True. As mentioned before, in our running ex-

ample a green association would take the form Sta� ID=A11235 ∧

Match IDs = True→ Decision=True. In addition, associations of the

form GREEN→ DECISION=True may be also present in the attribute

bag due to the existence of redundant rules in the original policy,

e.g., a user holding the GREEN and getting the DECISION=True at-

tribute value because of another rule di�erent to the one being

processed at a given moment of time. For the purposes of our ap-

proach, we assume redundant rules have been identi�ed and re-

moved beforehand, as discussed in [4].

OrangeAssociations. In a similar fashion, our supporting func-

tion getOrangeAssociations selects the ones that depict the form

GREEN ∧ ORANGE→ DECISION=True, where antecedent GREEN and

consequent DECISION=True stand as before and ORANGE stands for

an additional set of attributes not included in GREEN, e.g., GREEN

∩ ORANGE = ∅. Following the example shown above, we aim to de-

tect all associations of the form {g1 ∧ g2 ∧ g3 ∧ o1 ∧ ... ∧ oN}→

DECISION=True for some green attributes g1, g2 and g3 and some

orange attributes o1 to oN for someN> 0. Referring back to our run-

ning example, an orange associationwould then take the form Sta�

ID=A11235 ∧ Match IDs=True ∧ Location=ER→ Decision=True. As

shown in Algorithm 2 (Lines 3-5), we aim to obtain the orange as-

sociations that are related to a given green one. With this in mind,

we populate the GREEN set with the attributes depicted in the cur-

rent green association being processed so we can locate the orange

ones as just explained. In our current implementation, to be further

discussed in Section 5, we leverage our supporting tools to enlist all

possible associations from the input dataset, e.g., the attribute bag

labeled as A in Algorithm 2, and parse them sequentially looking

for the ones depicting the pattern described above.

YellowAssociations. In addition, our auxiliary function getYel-

lowAssociations computes the set of yellow associations by taking

the aforementioned ORANGE as an input and inspecting the origi-

nal set of associations in order to locate the ones meeting the form

¬GREEN ∧ ORANGE→ DECISION=False, where ORANGE stands as ex-

plained before and ¬GREEN denotes the inverse of the set of green

attributes introduced before, that is, all other attributes not in the

GREEN nor in the ORANGE sets. Also, DECISION=False the inverse

of DECISION=True, that is, the attribute holding the result of the

access request depicting the value of False. In our running exam-

ple, a yellow association would take the form Location=ER→ De-

cision=False. Moreover, associations of the form ¬GREEN ∧ ORANGE

→ DECISION=True may need to be considered as well in order to

take into account policy rules granting the access request based

on the attributes contained in the current ORANGE set. Even when

they may not necessarily represent a security vulnerability (assum-

ing they are accessing the same protected resource), they may add

little value to our approach as the ORANGE attributes may be al-

ready shared by some other entities depicted within our attribute

bag, thus defeating our initial purpose of expanding an original au-

thorization policy by taking into account previously-unconsidered

attributes, as it is graphically depicted in Fig. 2.

Leveraging Support. Our approach also relies heavily on the

concepts of support and con�dence, which, as mentioned in Sec-

tion 2, are core for properly selecting interesting associationswithin

a certain application domain. As shown in Algorithm 2, we lever-

age support in order to measure the degree of correlation between

the green, orange and yellow attributes, thus estimating the size of

the populationsUSr andUCr described in Section 4.1. From the the-

ory of association analysis [15], given two associations of the form

A→ C and A∧ B→ C, support for A∧ B→ C is at most as the sup-

port for A→ C. Therefore, the support for an orange association of

the form GREEN ∧ ORANGE→ DECISION=True is as most as the sup-

port of a green association of the form GREEN→ DECISION=True,

assuming the attributes listed in GREEN are the same for both.With

this in mind, we want the support of a green and its respective or-

ange association to be as close as possible, ideally, the same. In

addition, we also want the support of our detected yellow asso-

ciations to be as close to zero with respect to the support of the

orange ones, in an e�ort to provide a quantitative measurement

for minimizing potentially security vulnerabilities, as discussed in

Section 4.1.

LeveragingCon�dence.As it is also shown in Algorithm2, we

leverage con�dence as a metric for the quality of all detected color-

named associations. Referring back to Section 2, con�dence of our

green associations can be de�ned as c(GREEN→ DECISION=True) =

s(GREEN∪ DECISION=True)/ s(GREEN). Consequently, in order to get

a con�dence level of 1.0, the values of s(GREEN ∪ DECISION=True)

and s(GREEN) must be the same, that is, the number of records con-

taining the green attributes is the same as the number of records

containing both the green attributes as well as the positive ac-

cess decision, which would then imply that the authorization pol-

icy from where the attribute bag was collected only grants access

when the green attributes are present. In such a context, any value

less than 1.0would imply that s(GREEN) >s(GREEN∪ DECISION=True),

whichmay occurwhen there exists another rule in the policy grant-

ing access to the same resource by means of the same green at-

tributes, e.g., redundant rules orwhen the policy enforcement mech-

anism exhibits some faulty behavior, such as denying an access

request even when the green attributes, as stated by the original

policy, are shown at request time. A similar situation may happen

with the orange and yellow rules: any con�dence value less than

1.0 may indicate an anomalous situation that may compromise the

e�ectiveness of our approach.

5 EXPERIMENTAL EVALUATION

As mentioned in Section 1, we aim to provide experimental evi-

dence that can support the implementation of our proposed ap-

proach in practice. With this in mind, we have developed a series

of experiments with two main objectives:

First, we aim to prove the feasibility of our approach by show-

ing that such correlated attributes, which are the key to our pro-

posed policymutation approach, do exist in datasets obtained from

both real-world policies and accompanying attribute-based data.

However, as stated in Section 2, the implementation of attribute-

collecting infrastructures is still in its infancy. Therefore, to the

extent of our knowledge, no publicly available datasets depicting

a rich collection of attributes exists yet. To alleviate this problem,

we perform an initial case study in which we leveraged a sample

dataset containing both access logs and attribute-based informa-

tion from Amazon, a major software company. Such dataset was

ACTION,TARGET,DATE,TIME,COMPANY,DEPT,JOB,LOC,DEC

rem,11044,Mar_2005,DURING_OH,3290,3302,3431,6,true

add,11044,Mar_2005,DURING_OH,3290,9910,4576,6,true

add,11044,Apr_2005,DURING_OH,3290,3302,3431,6,true

add,11044,Apr_2005,DURING_OH,3290,3861,3431,6,true

add,11044,Apr_2005,DURING_OH,3290,4956,3431,6,true

add,11044,Apr_2005,DURING_OH,3290,9910,4576,6,true

add,11044,Apr_2005,DURING_OH,3290,5374,2322,6,true

add,11044,Jul_2005,OUT_OF_OH,3290,3861,3431,6,true

add,11044,Jul_2005,OUT_OF_OH,3290,4956,3431,6,true

add,11044,Jul_2005,OUT_OF_OH,3290,3302,3431,6,true

add,11044,Jul_2005,OUT_OF_OH,3290,9910,4576,6,true

Figure 3: Sample records contained in the Amazon dataset.

obtained from enforcing an authorization policy over a large set

of users and protected resources, and provides a good experimen-

tal ground as it contains data from access requests as well as data

collected from user pro�les, which e�ectively depict the real-time

collection of attributes as intended for our approach.

Second, we aim to show that the detection of correlated attributes

from a given attribute bag can be e�ciently achieved. To this end,

we conducted another case study in which we performed experi-

ments with a set of synthetic policies derived from real-world en-

vironments, which depict a varying level of correlation and a vary-

ing number of records and attributes contained in the attribute bag.

We also simulated a series of attack scenarios based on the model

described in Section 3: we inspected the policies under study to

compromise the attributes granting access to the most sensitive re-

sources. Later, we arti�cially added a series of correlated attributes

which were then used to create a series of mutated policies.

For our experiments, we utilized WEKA 3.7 [3], a tool set imple-

menting several data mining techniques such as the association

analysis used in our approach, and used Java and Python as our

programming languages. With respect to association analysis, we

utilized the Apriori algorithm as described in [12]. We performed

our experiments in a MacBook Pro 2012 2.9 GHZ Intel Core i7 with

8 GB RAM and 1 TB HD. Our self-developed tools, including the

ones providing support for data generation, correlation detection,

and data preprocessing, are available upon request to the authors.

5.1 Case Study 1: A Large-scale Enterprise

Dataset Overview. For our �rst case study, we aim to show the

feasibility of our approach by implementing it on top of existing

access control mechanisms deployed in practice. To this end, we

leveraged a dataset which depicts both access logs as well as user-

based attribute information compiled by Amazon and other sub-

sidiary companies [13]. This dataset was made available through

the UC Irvine Machine Learning repository [11]. For the purposes

of our experiment, we leveraged the user-based attribute informa-

tion along with the access logs to produce an attribute bag as de-

picted in our approach. In addition, we assumed an authorization

model depicting access control lists, granting access to resources

based on a list of identi�ers depicted by end-users. The dataset de-

picts 30,000 di�erent users, 6,454 protected resources and 716,063

access log entries. Fig. 3 shows an excerpt of an attribute bag depict-

ing our experiment: information from access logs, depicted by the

�rst four attributes listed, was combined with attributes assigned

Number of Records

0

20

40

60

80

100

C
or

re
la

tio
n

P
er

ce
nt

ag
e

Department Job Company Location

10 50 100 200 500 1000

Number of Records

Figure 4: Experimental results for the Amazon dataset.

to end-users as depicted by the last six, e.g., attribute TARGET rep-

resents the resource being accessed and attribute JOB depicts the

organizational job code (role) as held by an end-user. The result of

the access request is depicted by the DEC (Decision) attribute. We

also carried out an extensive preprocessing step tailored to normal-

ize the attribute values in an e�ort to make them more suitable for

analysis. As an example, the values depicted by attributes DATE

and TIME, as depicted in Fig. 3, were normalized to literal values

in such a way that they can be processed by our supporting frame-

work WEKA.

Experiment Results. Our experiments included the TARGET

and DEC attributes as our green ones. Following the approach de-

scribed in Section 4.2, wewere able to detect orange rules depicting

a set of attributes correlated to those. As an example, Fig. 4 shows

our experimental results for an attribute bag similar to the one de-

picted in Fig. 3. We were able to identify a strong correlation with

the attributes COMPANY and LOC (Location), which may be due

to the fact that resources may be accessed by end-users belong-

ing to the same organizational units, which may also happen to be

physically located within the same premises. Also, we detected a

moderate correlation with respect to the DEPT (Department) and

JOB attributes, which may indicate that several organizational po-

sitions have been granted access to the same resources.

During our experimental process, we were also able to obtain

the following insights: First, we observed that our supporting frame-

work, WEKA, originally detects a signi�cant number of original

associations that are then later parsed to obtain the green and or-

ange ones as described in Section 4.3. This may have an in�uence

on the overall runtime of our implementation, thus possibly a�ect-

ing its deployment for real-time systems. Second, as expected, we

also observed that varying levels of our proposed usability thresh-

old would eventually result in di�erent attributes being detected

as correlated, e.g., the JOB attribute mentioned before. However,

varying the safety threshold has no tangible e�ects due to the fact

that the Amazon dataset depicts only positive access requests, e.g.,

requests that were always granted, therefore, no negative access

Table 1: Statistical composition of a set of sample policies.

Name A’s Rules A’s/Rule A’s/Entity

Healthcare 10 9 3 3

Online Video 4 6 3 3

Project Mgmt 12 12 4 5

University 10 10 2 3

requests exist, thus turning the calculated safety index to zero in

all experiments.

We also conducted an additional series of experiments by parti-

tioning the original attribute bag as it was originally constructed

into a series of sliced �les from di�erent sizes, each of them depict-

ing only one protected resource, as it is shown in Fig. 3, which con-

tains entries belonging to the same value for the TARGET attribute.

In such experiments, we observed that the smaller the �le in size,

the more attributes it can detect as correlated, despite high cover-

age and safety thresholds, as it is shown in Fig. 4. That may be due

to the fact that a smaller number of requests in the original dataset

may either indicate a small homogeneous user population or, more

likely, such a small number of requests may not accurately depict

a representation of all the users that ultimately may have runtime

access to the resources being analyzed.

Limitations. Even though the Amazon dataset provides a good

experimental ground as it contains data from access requests as

well as data collected from user pro�les, still some limitations per-

sist: �rst, as mentioned before, the original access logs depict only

positive cases, thus turning the number of yellow associations de-

tected to zero. Second, the produced attribute bag depicts no varia-

tions in the degree of correlation between attributes and access re-

quests, as we have explored in the synthetic policies depicted in the

next section. Finally, as mentioned before, despite the fact our sam-

ple dataset does not contain an extensive attribute bag as it may

be optimal for the purposes of our approach, we believe our dis-

covery of correlated attributes in real-life data provides signi�cant

evidence of the suitability of our approach to be implemented on

top of future attribute-collection infrastructures such as the ones

devised by NIST and described in Section 2.

5.2 Case Study 2: A Set of Synthetic Policies

DatasetOverview. For our second case study, we leveraged a sam-

ple access control policy developed using our running example de-

tailed in Section 2 and Fig. 1, which is based on allowing access

to the EHRs of a given patient to all sta� members whose Sta�

ID attribute depicts a value that is contained within a prede�ned

authorization list. Our �rst experiment was designed to test dif-

ferent levels of correlation between a single pair of green and or-

ange attributes, e.g., the Match IDs and the Location attributes de-

picted in our running example. For such a purpose, we developed

data generation tool that is able to produce datasets depicting cus-

tomized attribute bags with a variable number of attributes and

data records, as well as a variable level of correlation between two

or more attributes. Using this tool, we produced di�erent datasets

varying the number of records and the level of correlation between

the green and orange attributes, while keeping the usability and

safety thresholds �xed to a value of 0.005 and 0.0, respectively. We

also used the tool to produce attribute bags with a �xed number

Number of Records

0

1

2

3

4

5

6

7

8

T
im

e
(s

)

50 100 200 500 1000

75% 85% 95% 100%

Correlation Percentage

Figure 5: Experimental results for our running example.

of records, a �xed number of correlated attributes, a �xed value

for the usability and safety thresholds as explained before, and a

varying level of correlation as well as a changing number of non-

correlated attributes. For the second dataset, For our experimental

dataset, we leveraged a set of realistic policies developed in the

context of the related work performed by Xu and Stoller [18], who

strove to provide attribute-based authorization policies in the con-

text of policy mining. The survey set contains the following poli-

cies: a Healthcare policy, which depicts a di�erent setting in the

context of EHRs as compared to our running example, an Online

Video policy tailored for restricting the distribution of video con-

tents to users based on their age and membership status, e.g., regu-

lar and premium users, a Project Management policy that provides

access to project planning, scheduling and budgeting for a set of

users based both on their organizational jobs as well as some other

environmental constraints, and �nally, a University policy, which

allows for teaching-related duties, e.g., grade preparation and up-

dating, to be governed by a set of rules based on institutional po-

sitions, such as students, sta� and faculty members. Table 1 pro-

vides some statistics as depicted by such policies. For each policy,

we obtained the number of attributes being de�ned, the number of

rules, the approximate number of attributes used within each rule,

as well as the approximate number of attributes being assigned to

each entity within the application domain of the policy.

Simulated Attacks.We simulated a series of attacks depicting

ourmodel as described in Section 3: for each policy, we selected the

rules that grant access to the most sensitive resources and opera-

tions, and simulated an attack on the attributes included in them.

For instance, leveraging our running example as depicted in Fig. 1,

we simulated an attack compromising the Sta� ID attribute, allow-

ing for attackers to deliberately manipulate such an attribute to

meet the values depicted by EHR records, thus also altering the

value of the Match IDs attribute and bypassing the authorization

policy being enforced as a result. In such a scenario, adding a cor-

related attribute such as the Access Location one, as proposed in

0 100 200 300 400 500 600 700 800 900 1000

Number of Records

1

1.5

2

2.5

3

3.5

T
im

e
(s

)

Healthcare Online Video Project Management University

Dataset

Figure 6: Results when varying the number of records.

our approach, may allow for deterring an ongoing attack. Our ex-

perimental process also leveraged our data generation tool men-

tioned before to populate attribute bags depicting realistic access

patterns and attribute-based data as required by the application

domain of each surveyed policy. As an example, an attribute bag

produced for the attack scenario just describedmay include a set of

entries depicting a varying distribution for di�erent values of the

Access Location attribute, in an e�ort to evaluate the e�ciency of

our approach for detecting di�erent levels of correlation between

attributes.

ExperimentResults.Our results, shown in Fig. 5, indicate that

our implementation is able to detect the correlated attributeswithin

a comparable response time independently of the level of correla-

tion, only exhibiting an expected linear dependency with the num-

ber of records. Fig. 6 shows an instance of our experimental results

when a series of attack scenarios such as the one just described

have been carried out over our set of policies. As with the previ-

ous experiment, we varied the number of records included in the

attribute bag while keeping the other parameters �xed, including

a level of correlation of 95%. As with our sample running policy,

our implementation can detect correlated attributes in a linear cor-

respondence with the number of records being inspected. We ob-

served a similar behavior in other instances of the same experi-

ment.

6 RELATED WORK

Self-adaptive Systems. Venkatasubramanian et al. [17] and Bai-

ley et al. [1] developed adaptive authorization models intended

to dynamically modify policies. The former used an authorization

model to adapt user privileges in response to system actions within

emergency situations in Smart architectures whereas the latter de-

veloped a reactive system that analyzes abnormal user behavior

and tightens or loosens the authorization policy accordingly, in-

tended to prevent the risk of attacks originated by insiders within

an organization. Our approach is similar in the ideology of an adap-

tive, preventive and proactive system, but is tailored to defeat at-

tacks originated by external agents bymeans of further identifying

the entities that have authorized access rather than any traces of

undesired or abnormal behavior.

DetectingPolicyViolations. Associationmining has beenused

in the context of access control in order to identify irregularities

and violations in policy permissions or user accesses in authoriza-

tion policies, as well as in the creation of policies based on logs

of user behavior within the system. For instance, Parkinson et al.

[14] leveraged such a technique in order to identify irregular �le

permissions in Microsoft’s New Technology File System (NTFS)

[6]. Moreover, Lee et al. [9] developed a framework that analyzes

patterns of user behavior to identify anomalies for intrusion detec-

tion. In the same context, Treinen and Thurimella [16] provided

so-called alarm streams based on associations to detect new attack

rules that are consequently added to the intrusion detection rule

list. We leverage these approaches as an inspiration for the one

presented in this paper. However, our approach di�ers in that we

strive to identify attributes that can lead to additional rules related

to authorized accesses, e.g., the ones that can further identify en-

tities having authorized access to resources, in order to success-

fully create expanded mutated policies, as compared to identifying

user violations or permission anomalies, as depicted by such re-

lated work.

Policy Mining. In addition, Xu and Stoller [18] used an access

control list to mine access rules in the automated development of

an ABAC policy. In this method, permission tupleswere broadened

and merged to create comprehensive and generalizable rules that

cover a larger number of permission relationships in the e�orts of

creating an established, �xed ABAC policy. However, opposed to

this approach, our model focuses on �nding more specialized, new

attribute permission relationships to create unique rules that can

be exchanged over time, expanding our original authorization pol-

icy. Furthermore, Bauer et al. [2] used associationmining on access

logs that display the history of user accesses in order to prevent ac-

cess control mis-con�gurations by identifying and predicting valid

user accesses policy changes to integrate into an authorization pol-

icy. Implementation of the policy changes relies on a system admin-

istrator, and part of the approach includes determining who to con-

tact in the system in order to make the identi�ed policy changes.

Similarly, LeMay et al. [10] developed a constraint based approach

to improve existing access control policies. Also relying heavily on

a system administrator to implement the policy improvements, the

model detects policy violations and formulates suggestions on pol-

icy improvements. Instead of a retroactive system that determines

policy improvements based on past permission mis-con�gurations

or violations, our approach strives to identify new rules in an au-

tomated fashion, reducing the amount of work expected from an

administrator to carry out policy changes.

7 DISCUSSION AND FUTUREWORK

MeetingMTDGoals. Following the discussion onMTDpresented

in Section 2, our approach strives to reduce the probability of carry-

ing out a successful attack such as the ones described in Section 3,

by limiting the amount of time available for an attacker to exploit

a compromised attribute. For such a purpose, we continuously mu-

tate policies that leverage correlated attributes, such as the orange

ones discussed above. This way, even when a small number of cor-

related attributes is detected, our approach helps produce several

di�erent mutated policies from those attributes, thus providing a

framework in which such policies are interchangeably enforced at

a random pace over time, as discussed at the end of Section 4.1

TrustModel. Furthermore, even when an attackermay be aware

of our proposed approach, we believe the random selection of a

subset of orange attributes may complicate the prediction of the

next policy mutation. In addition, we also assume the subset of

orange attributes cannot be compromised by an attacker, at least

until the next policy mutation. We base such assumption on the

fact that in case an attacker can potentially modify any attribute

at will at any time (including both the green and orange ones),

not only our approach can be circumvented, but also the original

attribute-based policy (and any other policies) that may be in place

for access mediation purposes. Further work may focus on incor-

porating a trust model for attributes, in such a way only the ones

that are deemed as highly trusted within a certain context can be

selected for policy mutation.

CalculatingThresholds. Asmentioned in Section 4, the choice

for our proposed usability and safety thresholds is left for secu-

rity administrators to make. Based on the experiences collected

during our experimental process, we believe administrators may

bene�t from statistical sampling techniques such as the ones de-

picted in Fig. 4, which show that the levels for strongly-correlated

attributes stay within a comparable range no matter the number

of entries contained in attribute bags. In addition, the choice of a

safety threshold may be in�uenced by the attribute trust model de-

scribed before: if highly-trusted attributes are used within a bag, a

larger safety threshold can be in place.

Correlation Time. Following the discussion presented above,

a periodical renewal of our proposed mutated policies may also

allow the identi�cation of changes in the way attributes are corre-

lated over time, in such a way that attributes that may no longer

be correlated with each other can be removed from a mutated pol-

icy. In a similar fashion, newly correlated ones may be introduced

into our mutated rules/policies as well. This is due to the fact that

attribute assignment, as done by the authorities introduced in Sec-

tion 2.1, may change continuously over time, therefore a�ecting

the way some attributes may appear as correlated to others for

the purposes of our approach. Future work may focus on detect-

ing such attribute-correlation periods in such a way that the next

mutation cycle can be e�ectively determined to avoid existing mu-

tated policies rejecting previously-granted requests because of un-

expected changes in attribute correlations and assignments.

8 CONCLUSIONS

In this paper, we have presented a novel approach inspired by

MTD that allows for authorization policies to be dynamically ex-

panded to include additional correlated attributes that better iden-

tify the entities involved in access requests, potentially decreasing

the chances of a successful attack against the original policies as

a consequence. As shown by the provided experimental evidence,

our approach can be successfully implemented on top of real-life

scenarios. As of today, we are exploring lines of future work to en-

hance the suitability of our approach for deployment in practice.

ACKNOWLEDGMENTS

The authors would like to thank Marthony Taguinod for his valu-

able contributions towards this work, whichwas partially supported

by a grant from theNational Science Foundation (NSF-SFS-1129561),

a grant from the Department of Energy (DE-SC0004308) and by a

grant from the Center for Cybersecurity and Digital Forensics at

Arizona State University.

REFERENCES
[1] Christopher Bailey, David W Chadwick, and Rogério De Lemos. 2011. Self-

adaptive authorization framework for policy based RBAC/ABACmodels. In 2011
IEEE Dependable, Autonomic and Secure Computing (DASC). IEEE, 37–44.

[2] Lujo Bauer, Scott Garriss, and Michael K Reiter. 2011. Detecting and resolving
policy miscon�gurations in access-control systems. ACM Transactions on Infor-
mation and System Security (TISSEC) 14, 1 (2011), 2.

[3] MarkHall, Eibe Frank, Geo�reyHolmes, Bernhard Pfahringer, Peter Reutemann,
and IanH.Witten. 2009. TheWEKA DataMining Software: An Update. SIGKDD
Explor. Newsl. 11, 1 (Nov. 2009), 10–18.

[4] Hongxin Hu, Gail-Joon Ahn, and Ketan Kulkarni. 2012. Detecting and resolving
�rewall policy anomalies. IEEE Dependable and Secure Computing 9, 3 (2012),
318–331.

[5] Vincent C Hu, David Ferraiolo, Rick Kuhn, Adam Schnitzer, Kenneth Sandlin,
Robert Miller, and Karen Scarfone. 2014. Guide to attribute based access control
(ABAC) de�nition and considerations. NIST Special Publication 800 (2014), 162.

[6] Ewa Huebner, Derek Bem, and Cheong Kai Wee. 2006. Data hiding in the NTFS
�le system. digital investigation 3, 4 (2006), 211–226.

[7] Sushil Jajodia, Anup KGhosh, Vipin Swarup, Cli�Wang, and X SeanWang. 2011.
Moving target defense: creating asymmetric uncertainty for cyber threats. Vol. 54.
Springer Science & Business Media.

[8] Jing Jin, Gail-Joon Ahn, Hongxin Hu, Michael J Covington, and Xinwen Zhang.
2011. Patient-centric authorization framework for electronic healthcare services.
Computers & Security 30, 2 (2011), 116–127.

[9] Wenke Lee, Salvatore J Stolfo, and Kui W Mok. 1999. A data mining framework
for building intrusion detection models. In Security and Privacy, 1999. Proceedings
of the 1999 IEEE Symposium on. IEEE, 120–132.

[10] Michael LeMay, Omid Fatemieh, and Carl A Gunter. 2007. Policymorph: inter-
active policy transformations for a logical attribute-based access control frame-
work. In Proc. of the 12th ACM Symposium on Access Control Models and Tech-
nologies. ACM, 205–214.

[11] M. Lichman. 2013. UCI Machine Learning Repository. (2013).
http://archive.ics.uci.edu/ml.

[12] Bing Liu,Wynne Hsu, and Yiming Ma. 1998. Integrating Classi�cation and Asso-
ciation Rule Mining. In Fourth International Conference on Knowledge Discovery
and Data Mining. AAAI Press, 80–86.

[13] Ken Montanez. 2016. Amazon Access Samples Data Set. (2016).
http://archive.ics.uci.edu/ml/datasets/Amazon+Access+Samples.

[14] Simon Parkinson, Vassiliki Somaraki, and Rupert Ward. 2016. Auditing �le sys-
tem permissions using association rule mining. Expert Systems with Applications
55 (2016), 274–283.

[15] Ramakrishnan Srikant and Rakesh Agrawal. 1996. Mining quantitative associa-
tion rules in large relational tables. InACM SIGMOD Record, Vol. 25. ACM, 1–12.

[16] James J Treinen and Ramakrishna Thurimella. 2006. A framework for the appli-
cation of association rule mining in large intrusion detection infrastructures. In
Recent Advances in Intrusion Detection. Springer, 1–18.

[17] Krishna K Venkatasubramanian, TridibMukherjee, and Sandeep KS Gupta. 2014.
CAAC–AnAdaptive and Proactive Access Control Approach for Emergencies in
Smart Infrastructures. ACM Transactions on Autonomous and Adaptive Systems
(TAAS) 8, 4 (2014), 20.

[18] Zhongyuan Xu and Scott D Stoller. 2015. Mining attribute-based access control
policies. IEEE Dependable and Secure Computing 12, 5 (2015), 533–545.

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml/datasets/Amazon+Access+Samples

	Abstract
	1 Introduction
	2 Background
	2.1 Attribute-based Access Control
	2.2 Association Analysis

	3 Attack Model and Assumptions
	4 Our Approach: Proactive Attribute-based Defenses
	4.1 Correlation-based Policy Mutation
	4.2 Finding Correlated Attributes
	4.3 Leveraging Attribute-based Associations

	5 Experimental Evaluation
	5.1 Case Study 1: A Large-scale Enterprise
	5.2 Case Study 2: A Set of Synthetic Policies

	6 Related Work
	7 Discussion and Future Work
	8 Conclusions
	References

