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ABSTRACT
Large Language Models (LLMs), such as ChatGPT and Google Bard,

have performed interestingly well when assisting developers on

computer programming tasks, a.k.a., coding, thus potentially re-

sulting in convenient and faster software constructions. This new

approach significantly enhances efficiency but also presents chal-

lenges in unsupervised code construction with limited security

guarantees. LLMs excel in producing code with accurate gram-

mar, yet they are not specifically trained to guarantee the security

of the code. In this paper, we provide an initial exploration into

using formal software specifications as a starting point for soft-

ware construction, allowing developers to translate descriptions

of security-related behavior into natural language instructions for

LLMs, a.k.a., prompts. In addition, we leveraged automated verifica-

tion tools to evaluate the code produced against the aforementioned

specifications , following a modular, step-by-step software construc-

tion process. For our study, we leveraged Role-based Access Control

(RBAC), a mature security model, and the Java Modeling Language

(JML), a behavioral specification language for Java. We test our

approach on different publicly-available LLMs, namely, OpenAI

ChatGPT 4.0, Google Bard, and Microsoft CoPilot. We provide a

description of two applications—a security-sensitive Banking ap-

plication employing RBAC and an RBAC API module itself—, the

corresponding JML specifications, as well as a description of the

prompts, the generated code, the verification results, as well as a

series of interesting insights for practitioners interested in further

exploring the use of LLMs for securely constructing applications.

CCS CONCEPTS
• Security and privacy → Access control; Software security
engineering; • Computing methodologies → Artificial intel-
ligence.
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1 INTRODUCTION
Released in late 2022, ChatGPT took the world by surprise, and

rapidly became a technological and media sensation in early 2023.

Based on Large Language Models (LLMs) [3], a popular technique

under the vast spectrum of Generative Artificial Intelligence (AI), it
can eloquently summarize vast amounts of knowledge as a response

to user-issued prompts, and has reportedly performed impressively

well in domains such as financing, journalism, and fiction writing.

Despite the hype, some pitfalls concerning ChatGPT have been

actively discussed by experts, as it may lack the fundamental fea-

tures devised for a broader, General Purpose AI [39]. As an example,

when asked for research papers, it makes them up completely (e.g.,

hallucination) [22]. Also, ChatGPT has been criticized as it may lack

enough safety and security controls. For instance, it may refuse to

serve controversial content when asked directly, but workarounds,

e.g., asking for the same content without explicitly mentioning the

controversial parts, are possible [30].

LLMs in general, have been prophesied as the next evolution

of computing programming, a.k.a., coding, as conversations with
LLMs may result in code being produced, in a variety of different

programming languages [16]. Such a feature has become really

attractive, as it may significantly alleviate the burden of coding, e.g.,

design, implementation, and debugging, resulting in faster, more

efficient developments and improved maintenance over time [1].

Lately, there has been an interest in augmenting Generative AI

approaches such as LLMs with human expert intelligence for en-

hanced results [37, 17, 24]. In our particular context, there is a need

for human-in-the-loop pipelines for developing applications from
scratch securely and efficiently using LLMs (e.g., ChatGPT, Google

Bard / Gemini, Microsoft Copilot or CodeX). To this aim, we pro-

pose a pipeline for developing security-sensitive applications using
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LLMs by leveraging the concept of chain of thought [40], which
refers to a series of connected cognitive reasoning steps in a per-

son’s thinking. Our method is to decompose a conceptual complex

task (described and defined in natural language) into a series of

structured and coherent sub-tasks, facilitating a logical progressive

process throughout the code development. Specifically, we decom-

pose the pipeline for secure constructing applications into three

stages: composing specifications in the Java Modeling Language

(JML) [4], generating code from JML specifications, and refining

and validating code using JML-based validation and verification

tools (V&V). Each stage is facilitated by LLMs to reduce the amount

of human effort required. The proposed pipeline aligns with the

logic progression followed by software programmers when develop-

ing applications. Decomposing the complex task into manageable

sub-steps also enables human-in-the-loop correction, where soft-

ware programmers can refine and validate the application’s security

features at different levels.

With that in mind, this paper reports on our experiences when

performing two case studies inwhichwe leveraged our specification-

based pipeline approach to construct two applications, a Banking

Application as well as a role-based authorization API. The Banking

Application implements banking functionality, such as depositing,

withdrawing, or transferringmoney, aswell as security-related func-

tionality such as restricting the execution of such operations to cer-

tain users only (authorization). The authorization API implements

common concepts for Role-Based Access Control (RBAC) [32], a

well-known access control model.

Overall, this paper makes the following contributions:

(1) In Sec. 2 and Sec. 3, we introduce a discussion on the function-

ality that LLM must provide to effective serve as assistants to

human developers while constructing software applications,

which may include, but may not be limited to: (i) the acquisition

of previously-unknown knowledge; (ii) the reduction of the

overall workload; and, (iii) the support on effectively removing

functional bugs and security vulnerabilities at the source code

level.

(2) In Sec. 4, we present a systematic, pipeline-inspired approach

combining LLMs and human intelligence, supporting task of

constructing secure code by using LLMs and formal specifica-

tions, such that not only LLMs can be leveraged to obtain more

knowledge on the implementation domain of such applications,

but can be also leveraged to automatically generate and correct

code as directed by the results of verification and validation

tools.

(3) Finaly, in Sec. 5, we present the results and the lessons learned

while conducting two case studies in which LLMs were lever-

aged as assistants using our proposed approach. We provide

a description of the JML specifications, the LLM prompts, the

generated code, the verification results, as well as a series of

interesting insights for future practitioners. Overall, our results

show that LLMs can: (i) generate non-trivial functional and se-

curity requirements; (ii) understand, generate, infer, and explain

JML specifications; (iii) generate code from JML specifications;

(iv) understand, generate, explain, and correct RBAC policies; (v)

correct code based on feedback received from verification tools;

1 /*@ requires array.length > 0;
2 @ ensures (\ forall int i;
3 @ 0 <= i < array.length -1;
4 @ array[i] <= array[i+1] );
5 @*/
6 public void sortAscending (int[] array ){
7 // bubbleSort(array);
8 quickSort(array); }

Figure 1: A Sample DBC Contract.

and, (vi) translate JML specifications to other programming and

annotation-based specification languages.

2 BACKGROUND AND RELATEDWORK
2.1 Assertion-based Contract Specifications
Design by Contract (DBC) [19] is a well-known software devel-

opment methodology in which the original developers of a soft-
ware module M establish a contract with other future developers,
a.k.a., clients, for M to be used correctly when building software.

Commonly, such a contract is defined in terms of formal descrip-

tions (specifications), a.k.a., assertions [31] in the form of pre- and
post-conditions: before using M, clients must make sure that M’s

pre-conditions hold. Similarly, the original developers must guar-

antee that M’s post-conditions hold once it has finished execution.

Fig. 1 shows a DBC contract written in the Java Modeling Language
(JML) [4], a DBC-inspired specification language for Java mod-

ules, i.e., the class method sortAscending. Pre-conditions (line 1),
expressed by means of the requires keyword, require the input

array to have a length greater than zero. Post-conditions (lines

2-4), expressed by means of the ensures keyword, state that, if the

pre-condition just mentioned is met, the input array will have all

elements in ascending order. Finally, as shown in lines 7-8, the orig-

inal developers may choose among different options to implement

the sortAscending method.

2.2 Verification and Validation Tools
Over the years, a suite of tools has been developed to verify the

correctness of software modules by checking their source code

implementations against their DBC contracts. As an example, the

contract of a module M can be used as a test oracle by first translat-

ing it into Runtime Assertion Checking (RAC) code [7]. Then, values

are randomly created for each of M’s formal parameters, and com-

pared against the RAC code created for M’s pre-condition. If such

a pre-condition is satisfied, a valid test case is said to be created.

Otherwise, the test case is discarded. If the test case is valid, M’s

body and the RAC code forM’s post-condition are both executed. If

the post-condition is satisfied, the test is regarded as a success, and
as a failure otherwise. Going back to Fig. 1, a set of valid test cases

would include producing instances of the input parameter array
whose length is greater than zero. Once the test cases are executed,

if the resulting array always has all of its elements correctly in

ascending order, the sortAscending method is said to have been

verified successfully.

Beyond the dynamic validation approach with RAC, also static

techniques and supporting tools exist. One well-established tech-

nique is Extended Static Checking (ESC). Extended Static Checkers
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1 RBAC3:
2 - a set of Roles R,
3 - a set of Users U,
4 - a set of Permissions P,
5 - a Role Hierarchy RH,
6 - a role -user assignment UA ⊆ R × U,
7 - a role -permission assignment PA ⊆ R × P,
8 - a set Card of constraints on RH, UA, PA.

Figure 2: The RBAC3 Security Model.

attempt to statically establish DBC assertions (contracts) without

any need for running the application. To be effective, ESC is based

upon the principle of modular reasoning, which implies that it at-

tempts to verify one method at a time [14]. For verifying a method’s

assertions, it uses the contracts of the methods called within rather

than the code itself. The verification is then carried out by translat-

ing a method’s code and specifications into verification conditions,

which in turn are checked by a built-in automated theorem prover.

As the problem of Extended Static Checking is not decidable in

general, false positives and negatives may be produced. The Open-

JML tool-suite offers both RAC and ESC capabilities, which makes

it an attractive validation platform for Java-based contracts [10].

Recently, a German security authority has mentioned OpenJML

as one of the tools supporting the formal verification of secure

software [2] demonstrating its relevance. Also, Bertrand Meyer,

who first developed the DBC methodology described in Sec. 2.1,

points out the problems of AI-based automated code generation by

giving a detailed example. To overcome such problems, he proposes:

“For the past few years, in the competition with remarkable new

subjects such as (surprise) machine learning, these disciplines of

requirements analysis, precise specification, and software verifica-

tion (both dynamic tests and static analyses including proofs) have

taken a second seat.” [20] Our work follows this line of thinking.

2.3 Role-Based Access Control
Role-Based Access Control (RBAC) has is the leading security model

for defining and enforcing authorization properties in software sys-

tems, mainly due to its flexibility and manageability [32]. Over the

years, RBAC has developed to the de-facto standard for access man-

agement in industry due to its economic impact [23]. Fig. 2 shows

a formal description of RBAC3, one of the different sub-models of

RBAC. The basic components, roles, users, and permissions, are

defined in the context of sets (lines 1-3). Roles are in turn organized

into a partial order called the role hierarchy (line 5). For instance, a

role r ∈ R is said to be senior to another role r’ ∈ R, and, conversely,

role r’ is said to be junior to role r if and only if (r, r’) ∈ RH. Users are

assigned to roles by means of the UA relation (line 6). Conversely,

permissions are assigned to roles by means of the PA relation (line

7). Constraints on the RH, UA, and PA relations are shown in line 8.

For instance, the constraint (u, UA, 1)* ∈ Card restrict every user

u ∈ U to be assigned to a single role only. Finally, a user u ∈ U is

granted a permission p ∈ P if and only if there exists (u,r) for some

role r ∈ R, and either (r, p) ∈ PA or (r’, p) ∈ PA for some role r’ ∈ R

and (r, r’) ∈ RH.

2.4 Using LLMs for Coding
LLM (Large Language Models) is a deep model that is trained on

large-scale datasets with the aim of generating human-level text [3].

One notable and widely discussed LLM is the GPT (Generative

Pre-trained Transformer) family developed by OpenAI, including

GPT [28] and GPT2 [29]. These models are trained to predict the

next token based on the previously generated tokens. LLM has also

gained attention for its potential in generating near-human-level

code. It can generate API calls [26], aid in self-debugging [5, 27],

and automate data analysis [6].

Despite the impressive performance of LLM in coding tasks, it

still needs to be improved to reach human-level proficiency. Various

techniques are being employed to enhance the accuracy of code

generation. One popular approach is to incorporate the concept

of a chain of thoughts (COT) into the prompting [40]. COT refers

to a series of connected reasoning steps or ideas in the thinking

process of humans. Drawing inspiration from the success of COT

techniques, a line of work seeks to promote coherent and struc-

tured reasoning for coding, such as turning one complex coding

task into several rounds with self-debugging and few-shot demon-

strations [5], decomposing a complex coding task into smaller sub-

tasks [27, 25], and dissecting intricate tasks into more digestible

sub-problems tackled in a sequential manner (e.g., “least-to-most

prompting” [41]). Another line of work seeks to understand code

generation via explanations. One study demonstrates the LLM’s

promise in reducing the steep learning curve associated with under-

standing code semantics [18]. Meanwhile, another study evaluates

on GitHub Copilot, a tool powered by LLMs. While initial indica-

tions hint at the tool’s efficacy in assisting with code inception,

the study elucidates the challenges of interpreting and debugging

code snippets generated by Copilot [36]. People have also started

to realize the importance of LLM’s security issues. For example,

Subhash et al. explore Gradient-based universal adversarial attacks

on large language models to ensure the models’ responsible and

secure deployment for high-risk sectors [35]. However, we focus on

the security issues of LLM-generated codes instead of adversarial

attacks on LLM itself, which has not been much observed in the lit-

erature. A recent work in this area comes from Sandoval et al. [33].

They carried out a study with Computer Science students, which

points out that only about 10% more typical low-level security bugs

have been introduced in C code while using an LLM. Although this

rate is surprisingly moderate, one can, however, conclude that the

productivity gained by employing an LLM did not lead to more

secure code.

3 PROBLEM STATEMENT
The tool-based, automated/semi-automated generation of code

based on a series of pre-defined requirements has been largely

studied in the literature in the past, applying a plethora of different

approaches and techniques, with varying results [15]. Unfortu-

nately, a constant among these approaches is the lack of adoption

in practice [34]. However, given the emerging popularity of LLMs,

and the promising results obtained when asked to perform cod-

ing tasks as described in Sec. 2.4, we believe there is an enormous

potential for the widespread adoption of such a technique. There-

fore, in this paper we are interested in exploring the capabilities of

publicly-available LLMs to answer the following research question:
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Figure 3: The research question considered in this paper: Are
LLMs effective assistants for building secure applications?

𝑅𝑄1: Can publicly-available LLMs be effectively and efficiently lever-
aged for securely constructing software applications?

Concretely, an approach combining human developers, LLMs,

and other relevant tools like the ones described in Sec. 2.2 should

not only make the development process faster, but should also

significantly contribute to producing a better and more secure

application. That includes successfully meeting the following goals:

• G1 [Knowledge]: An LLM-based approach must assist human

developers on improving the domain-specific functional as well

as the security-related knowledge needed to successfully build a

secure application. Knowledge can be improved in a quantitative
way, e.g., obtaining a larger number of relevant functional and

security requirements; or in a qualitative way, e.g., improving

the target rules of access control policies to be enforced by the

application under construction.

• G2 [Workload]: An LLM-based approach must assist human

developers with reducing the overall workload required to suc-

cessfully build a secured application. In this context, workload

can be defined in terms of the efforts required to carry out the

design, implementation, and testing of the target application, and

can be measured by the overall time required for such tasks, the

number of coding hours, the number of hours spent on perform-

ing tests, etc.

• G3 [Verification]: An LLM-based approach must assist human

developers with detecting and removing any software incon-

sistencies and/or errors, a.k.a., bugs in both functional and/or

security-related implementation code. That may include classical

functional bugs such as arithmetic miscalculations as well as

security-related ones such as vulnerabilities introduced in the

enforcement code of access control policies.

• G4 [Validation]: Finally, an LLM-based approach must assist

human developers with constructing a software application that

meets both its functional and security requirements. That in-

cludes making sure that the implementation code is correctly ver-

ified and validated with respect to the requirements enunciated

in G1 [Knowledge], and has removed any bugs/vulnerabilities

as stated in G3 [Verification].

In Sec. 5, we present the lessons we learned while conducting two

case studies based on the approach we present in Sec. 4, which pro-

vide empirical evidence towards answering the research question

considered in this paper.

4 OUR APPROACH: COMBINING HUMAN
AND ARTIFICIAL INTELLIGENCE

We now present our initial exploratory work to answer the research

question presented in Sec. 3. Concretely, we are interested in lever-

aging LLMs to assist human developers on transforming a series

of initial requirements, possibly contained within a software de-

sign document written in English, into a securely tested software

application by means of a systematic construction approach.

4.1 Preliminary Assumptions.
For the purposes of our approach, we assume that human developers

have accumulated experience on software construction/develop-

ment matters above an entry, a.k.a., junior, level. That may include

pro-efficient coding skills in Object Oriented Programming (OOP),

e.g., encapsulation, inheritance, and polymorphism, as well as test-

ing and debugging. Also, we assume developers are knowledgeable

in the topics discussed in Sec. 2, i.e., formal specifications (Sec. 2.1),

specification-based V&V tools (Sec. 2.2), the RBAC security model

(Sec. 2.3), and prompt engineering techniques for LLMs (Sec. 2.4).

Finally, the development of an approach at the beginner and junior

experience levels, e.g., programming students and/or recent gradu-

ates, or senior developers not familiar with the topics discussed in

Sec. 2, is left as a very interesting line of future work.

4.2 A Pipeline for Secure Software
Construction.

As shown in Fig. 4, our approach consists of a pipeline that leverages

LLMs, formal specifications, as well as verification and validation

tools, all combined as follows:

(1) Requirements Gathering. We start with a pre-defined initial list
of functional and security software requirements, written in the

natural language, which is provided by the human developers.

Our goal is to collect minimum human knowledge as seed.

Next, we ask the LLM assistants to generate an additional list

of natural language requirements, which are later combined

with the initial one to produce a final list that is consumed in

subsequent steps of our pipeline.

(2) Preliminary Specifications. Next, we asked our LLM assistant to

generate a series of preliminary, a.k.a., rough, JML specifications

based on such natural language requirements.

(3) Specification Refinement. Our next step consists on manually
customizing, a.k.a., refining, the JML specifications obtained in

the previous step, in an effort to better describe the intended

behavior of the software, e.g., handle special and/or corner

cases, exceptions, security violations, etc. This step may require

proficiency in the formulation of JML specifications, since even

when the specifications produced by the LLM in the first place

may be of decent quality, still the input of an expert is desired to

correctly describe security and functional behavior. We argue

that our approach with minimal supervision ensures superior
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Figure 4: A Pipeline for Securely Constructing Applications Using Formal Specifications and LLMs.

security quality, in contrast to designing from scratch or without

non-supervision.

(4) Prompt Generation. Once the JML specifications have been re-

fined, we propose to use them as scripts for generating prompts,

which will be then later fed to the LLM. For this process, we

identify three different techniques: (i) Syntax-Guided Approach:
the prompts are created by wrapping the specifications as fol-

lows: we start with the post-conditions, and then continue with

pre-conditions, processing one requires/ensures clause at a time.

Inside each clause, we unwrap each complex statement, and

produce a prompt separately, which is added to the result pool.

(ii) Specs-Assisted Prompts: The prompts are created by asking

the LLM to explain a subset of the JML specifications, which are

fed one at a time as explained in the previous technique. Then,

from each explanation, an individual prompt is generated sepa-

rately and added to the result pool. (iii) LLM-Assisted Prompts:
This approach proceeds as the previous one by submitting the

JML specifications to the LLM. However, this time, the LLM is

asked to produce the prompts directly, without any extra con-

tent or explanation. From there, a manual customization of each

prompt may take place if desired. As before, each generated

prompt is finally added to the result pool.

(5) Code Generation. Each individual prompt in the result pool is

then fed to the LLM to produce code. Related prompts may also

be combined together if needed, e.g., the prompts related to a

single Java method. The resulting code is then merged into a

single Java module and compiled locally for correctness.

(6) Code Verification & Validation. Finally, the code generated by

the LLM is forwarded to the JML-based V&V tools provided

by the OpenJML framework, i.e., RAC and ESC, as described in

Sec. 2.2. If errors are found by those tools, these are fed back

as prompts to the LLM and it is asked what went wrong. If the

LLM cannot provide a convincing solution to the issues, then

the code is manually modified and fed again to the V&V tools.

Alternatively, the JML specifications can also be modified man-

ually, as illustrated in Step 3, and the pipeline is restarted from

that point onward: prompt generation (Step 4), code generation

(Step 5) and verification (Step 6).

5 CASE STUDIES
In this section, we present a pair of case studies we conducted fol-

lowing the pipeline approach discussed in Sec. 4, which leverages a

series of publicly-available LLM assistants for securely construct-

ing software. We start in Sec. 5.1 by describing the methodology

we followed for both studies, which includes a summary of the

sessions conducted with our LLM assistants as well as a description

of the criteria used to evaluate the effectiveness of the information

retrieved from them. Next, in Sec. 5.2, we describe the construction

of a banking application that implements RBAC as a security model

to restrict access to critical functionality, e.g., withdrawing money

from an account. Later, in Sec. 5.3, we describe the development of

an Application Programming Interface (API) for the RBAC security

model. For each case study, we present the natural language (Eng-

lish) requirements, the preliminary and refined JML specifications,

the code obtained from our LLM assistants, as well as the final code

that was obtained after using JML-based tools. Finally, in Sec. 5.4,

we present a summary of the lessons we learned during our case

studies, which we hope are useful for future practitioners interested

in leveraging our approach for secure software construction.

5.1 Methodology
LLM Sessions. We carried out a series of interactive sessions with

the LLMs considered in our study by leveraging the COT techniques

described in Sec. 2.4. We started our sessions by asking our LLM
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1 Balance(A): Returns the balance of the bank
2 account A. Such balance must never
3 be negative.
4 Deposit(A,M): Increments the balance of A by
5 a positive amount M.
6 Withdraw(A,M): Decrements the balance of A by
7 a positive amount M if and only
8 if the balance of A is greater or
9 equal to M.
10 Transfer(A,B,M): Increments the balance of A
11 by a positive amount M, which is
12 then decremented from the balance
13 of B if and only if the balance
14 of B is greater or equal to M.

(a) Initial Requirements Obtained from Human Developer.

1 PayInterest(A,R): Increments the balance of A
2 by a percentage amount determined
3 by interest rate R, for instance ,
4 A = A + (A * ( R/100 )).
5 The value of R must be a value
6 greater than 0 but less than 100.
7 Freeze(A): Denies the subsequent execution of
8 the Balance , Deposit , Withdraw ,
9 PayInterest , and Transfer
10 operations for the account A.
11 Unfreeze(A): Allows the subsequent execution
12 of the Balance , Deposit , Withdraw ,
13 PayInterest , and Transfer
14 operations for the account A.

(b) New Requirements Obtained from LLM Assistants.

Figure 5: Sample Requirements for a Banking Application.

1 /*@ requires amount > 0.0 &&
2 @ amount <= acc.balance;
3 @ ensures ((acc.balance ==
4 @ \old(acc.balance) - amount) >= 0);
5 @*/
6 public boolean withdraw(double amount){...}

Figure 6: Preliminary Specifications for withdraw generated
by ChatGPT.

1 /*@ requires amount > 0;
2 @ requires balance >= amount;
3 @ ensures \old(balance) - amount == balance; */
4 public void withdraw(int amount) {...}

Figure 7: Preliminary Specifications for withdraw generated
by Google Bard.

1 //@ requires amount > 0 && balance >= amount;
2 //@ ensures balance == \old(balance) - amount;
3 public boolean withdraw(double amount){...}

Figure 8: Preliminary Specifications for withdraw generated
by CoPilot.

assistants about any specific real-life deployments of the technolo-

gies considered in our case studies, in order to provide a suitable

starting context. Next, we asked our LLM assistants about specific

information related to each of the steps of our proposed pipeline

approach, e.g., for Step 1, we inquired about a series of specific

functional and security requirements, e.g., operations and security

policy rules, that a secure software back-end should implement, as

well as a proper explanation for each of them. Later, we asked the

LLM assistants to provide more contextual information on each of

the responses provided in the previous step, e.g., a description of

potential use-case scenarios, in an attempt to highlight their im-

portance for real-life deployments. Finally, we also asked our LLM

assistants to provide any sources, e.g., documents, websites, articles,

etc., for each provided response, as well as any additional relevant

information, e.g., the date when the source was first published.

V&V Tool Sessions. In the validation and verification step, we use

OpenJML’s RAC and ESC (see Section 2.2). The former tool checks

JML specs, as depicted in Fig. 12, against the LLM-generated code

at runtime, whereas the latter statically checks the generated code

against the specifications, i.e., without running the code.

5.2 Case Study I: A Banking Application
We conducted our experiments in this case study with three LLM

assistants, ChatGPT, Bard, and CoPilot.

Step 1. Requirements Gathering. The initial list of functional re-
quirements for the Banking Application, as defined by a human de-

veloper with experience as a regular user of banking operations, are
listed in Fig. 5(a), and contained basic operations such as Deposit,
Withdraw, and Transfer. Later, we asked our LLM assistants for

information on additional banking operations that could be imple-

mented in the context of our application. As a result, we obtained

several different options besides the ones listed in Fig. 5(a). Fig. 5(b)

shows a brief summary of additional operations that were finally

included as requirements in the context of our banking application.

In addition, the Banking Application required a security policy

restricting access to the aforementioned operations as follows:

• Three roles were identified: Manager, Supervisor, and Teller. Fol-
lowing Sec. 2.3, a role hierarchy is defined as: role Manager is

senior to Supervisor, and role Supervisor is senior to Teller.

• Highly-sensitive operations must be reserved only for users as-

signed the role Manager, e.g., the Freeze and Unfreeze operations.

• Mildly-sensitive operations are reserved only for users assigned

the role Supervisor, and roles seniors to Supervisor (Manager),

e.g.,: Withdraw, Transfer, and PayInterest.

• All other operations are accessible to all employees, despite their

role assigned, e.g., Balance and Deposit.

Again, we asked our LLM assistants for information regarding

this access control policy. For instance, we asked what operations

should be carried out only for upper-level employees, e.g., Managers

and Supervisors, and what operations should be available to all
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1 /*@ requires amount > 0.0 &&
2 @ amount <= acc.balance &&
3 @ isFrozen == false &&
4 @ (role.equals(Role.SUPERVISOR) ||
5 @ role.equals(Role.MANAGER));
6 @ assignable balance , acc.balance;
7 @ ensures ((acc.balance ==
8 @ \old(acc.balance) - amount) >= 0)
9 @ ==> (\ result == true) ||
10 @ ((acc.balance ==
11 @ \old(acc.balance) - amount) < 0)
12 @ ==> (\ result == false); */
13 public boolean withdraw(double amount){...}

(a) Specifications for the withdraw Method.

1 /*@ requires amount > 0.0 &&
2 @ amount <= acc.balance &&
3 @ isFrozen == false &&
4 @ (role.equals(Role.SUPERVISOR) ||
5 @ role.equals(Role.MANAGER));
6 @ assignable balance , acc.balance;
7 @ ensures balance ==
8 @ (\old(balance) + amount) &&
9 @ acc.balance ==
10 @ (\old(acc.balance) - amount);
11 @*/
12 public void transfer (double amount ,
13 BankAccount acc){...}

(b) Specifications for the transfer Method.

Figure 9: Refined JML Specifications for a Banking Application.

employees. For our specific policy, we were to confirm most of the

policy rules described above. Only minor changes were suggested

and ultimately accepted. For instance, Google Bard suggested that

the Freeze/Unfreeze operations should only be available to Man-

agers. Initially, it was available to both Managers and Supervisors.

Overall, the information received from our LLM assistants with

respect to requirements gathering provided significant evidence
towards meeting goals G1 [Knowledge], G2 [Workload], and G4

[Validation].

Step 2. Preliminary Specifications. Following our proposed ap-

proach, we asked our LLM assistants to retrieve a series of JML

specifications for the banking operations shown in Fig. 5(a) and

Fig. 5(b). As shown in Fig. 6 and Fig. 8, LLM assistants are able to

provide syntactically correct specifications. However, they make

limited use of JML syntax, and they may not be able to fully cover

different specification cases as needed by Human Developers. As

an example, in Fig. 6, JML specifications restricting the execution of

the withdrawmethod to roles Supervisor and Manager, as required

by the policy described in a previous step, were missing. Also, the

JML assignable clause, which limits the variables and parame-

ters that can be potentially modified by method withdraw is also
missing. Such a specification is crucial to prevent the method from

introducing unwanted side effects [8].

Step 3. Refined Specifications. To express the requirements in a

more formal and precise way, we leveraged the preliminary specifi-

cations depicted in formulated them as JML specifications as shown

in Figs. 9(a) and 9(b). For example, the JML specification for the

withdraw method (see Fig. 9(a)) includes preconditions stating that

(1) the roles Supervisor and Manager are required, (2) the amount

must be greater than or equal to 0.0, (3) the amount must be less

than or equal to the account’s balance and (4) finally the account

must not be frozen. The specifications for the other methods were

defined in a similar way, and required a moderate-to-considerable

effort from the human developers before the refinement could be

considered as optimal for further steps of our case study.

Overall, the information obtained from our LLM assistants with

respect to providing useful JML specifications via Steps 2 and 3

may be considered as moderate evidence towards meeting goals G1

[Knowledge], G2 [Workload], and G3 [Verification].

Step 4. Prompt Generation. As described in Sec. 4, we conceived

three different strategies to generate prompts based on JML spec-

ifications. Fig. 10 shows the prompts generated while using the

Syntax-Guided approach on the JML post-condition specifications

for the transfermethod, shown in Fig. 9(b) (lines 7-10). Conversely,

Fig. 11 shows the prompts generated for the JML pre-condition spec-

ifications of the same transfer method in Fig. 9(b). This time, the

RBAC policy is disclosed as a single prompt (lines 1-3), and it is

interleaved with other sample prompts for functionality behavior

(lines 5-13). We performed the translation from JML specification to

prompts in a manual way, e.g., without the use of any supporting

implementation software, which is left as an interesting feature to

explore as a part of future work.

Step 5. Code Generation. We provided all the generated prompts

to our LLM assistants within the same session, starting with the

prompts for JML post-conditions and continuing with prompts for

JML pre-conditions. An illustrative excerpt of the obtained code,

as generated by ChatGPT, is shown in Fig. 12. Lines 3-9 show the

code generated for the withdrawmethod, which was obtained from

prompts generated for JML post-conditions. Interestingly, ChatGPT

generated code from JML pre-conditions separately, as depicted

in lines 12-18, which shows code to allow for role Manager to

not only execute the withdraw method, but to also implement the

pre-condition checks required by our refined JML specifications.

As a comparison, Fig. 13 shows the corresponding code produced

by GitHub’s CoPilot. It provided a simpler implementation, not

introducing a Manager class, but with similar functionality.

Overall, the evidence provided by LLM assistant on coding gen-

eration, comprising Steps 4 and 5 of our approach, was significant
toward meeting goals G1 [Knowledge] and G2 [Workload], as
the workload of coding was significantly reduced once prompts for

our JML specification were provided by human developers. This is

consistent with other recent studies featuring the use of LLMs for

code generation, as it is described in Sec. 2.4.

Step 6. Code Verification & Validation. We employed OpenJML’s

RAC and ESC tools to validate the Java code generated in the previ-

ous step. Both tools reported problems with this code. For example,

missing spec_public statements for private member fields were
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Table 1: Assessing Goals for LLM Assistants via Case Study I.

Goal Step 1 Steps 2-3 Steps 4-5 Step 6

G1 [Knowledge] Significant Moderate Significant Moderate

G2 [Workload] Significant Moderate Significant Moderate

G3 [Verification] N/A Moderate N/A Significant

G4 [Validation] Significant N/A N/A Moderate

1 Create Java code for a bank account
2

3 Create a method called transfer , which
4 deducts a certain amount of money from
5 an external bank account and pass it to
6 the current bank account

Figure 10: Prompts from a JML Ensures Clause.

reported by both RAC and ESC.
1
In another case, ESC reported a

violation of a pre-condition of Account.withdraw. To understand

this problem, consider lines 15 and 16 in Fig. 12. One can see that the

method withdraw of the (inner) class Manager does not check the

condition !isFrozen before calling Account.withdraw and hence

the pre-condition of Account.withdraw cannot be satisfied (see

line 7, where it is required that isFrozen must be false). Conse-

quently, ESC correctly reported this violation.

We gave this feedback to ChatGPT and formulated a prompt

stating that the pre-condition !isFrozen could not be established

by ESC. Interestingly, it first tried to modify the JML specification

accordingly. This, however, was not the fix we expected. So we

requested ChatGPT to correct the code rather than the JML specifi-

cation. It then actually came up with the corrected code by adding

!isFrozen to the if-statement before the account.isFrozen call.
It also explained its fix correctly:

• In this updated code, the Manager.withdraw method includes the
additional precondition !account.isFrozen to establish the necessary
condition for calling account.withdraw. This change ensures that the
!isFrozen precondition of the withdraw method in the Account class
can be proven when invoked by the Manager class. By incorporating
this modification, ESC should be able to successfully verify the code
with the desired preconditions and ensure that the account is not
frozen before performing a withdrawal.
Overall, with respect to Step 6, the information retrieved by

LLM assistants can be considered as moderate evidence with re-

spect to meeting goals G1 [Knowledge], G2 [Workload], and G4

[Validation]. Conversely, the assistance of the JML tools can be con-

sidered to be significant evidence with respect to G2 [Workload],
G3 [Verification], and G4 [Validation]. Finally, a summary of

the assessment of the research goals addressed in this paper, with

respect to our Case Study I, can be found in Table 1.

5.3 Case Study II: An API for RBAC
We also conducted a second case study, in which an RBAC API is

implemented, which, for example, could be used by the Banking

1
Private member fields may only occur in JML specifications if they are defined with

this JML statement.

1 Create a text policy file to represent
2 the following role hierarchy
3 "Teller:Supervisor:Manager"
4

5 Create Java code for an RBAC role
6

7 Create Java code transfer money from
8 one account to another , use the BankAccount
9 class created before
10

11 Before transferring money check that the
12 amount is greater than zero and the amount
13 is less or equal to the account balance

Figure 11: Prompts from a JML Requires Clause.

1 public class BankingApp {
2 public static class Account {
3 public void withdraw(
4 double amount) {
5 if(amount > 0 &&
6 balance >= amount
7 && !isFrozen){
8 this.balance -= amount;
9 }
10 }
11 public static class Manager {
12 public void
13 withdraw(Account account ,
14 double amount) {
15 if (account != null &&
16 amount > 0) {
17 account.withdraw(amount);
18 }
19 }}}

Figure 12: Sample Code Generated by ChatGPT.

1 public class BankAccount {
2 private double balance;
3 public void withdraw(double amount) {
4 checkFrozen ();
5 balance -= amount;
6 }
7 }

Figure 13: Sample Code Generated by CoPilot.

Application for implementing role-based policies. The aim is to gain

further experience with our LLM-based approach for constructing

secure code and obtain hints how far our results can be generalized.

The case study was carried out with ChatGPT and now also with

Google Bard (instead of CoPilot) to conduct a broader comparison.

Step 1. Requirements Gathering. The requirement-gathering phase

was simplified in this case. In particular, we let the LLM assistants

help us find the functional and security requirements required for

a basic RBAC-API implementation. Please consider the first two

prompts depicted in Fig. 15 for this purpose. The second prompt
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1 create a bank application in Java
2 with almost all the functionalities
3 that are required by a user to operate
4 a bank account and also for the bank
5 to be able to check for the banking
6 rules based on the United States Banking
7 System and Protocols.

Figure 14: Sample Prompts for Requirements.

1 Do you know RBAC?
2 Do you know the RBAC standard?
3 Can you produce a small Java module implementing a

core RBAC API?
4 Can you extend this with role hierarchies?
5 And Static Separation of Duty?

Figure 15: Sample Requirements Prompts for an RBAC API.

(concerning the ANSI RBAC standard [12]) was meant to find out

whether the LLMs knew the RBAC standard. As a result of these

experiments, both LLMs did know core RBAC concepts including

users, roles, and permissions as well as user and permission assign-

ment and could explain these concepts to the user in response to

the prompts (addressing G1 [Knowledge]). Additionally, Google
Bard even seems to know the ANSI RBAC standard.

Step 2. Preliminary Specifications and Step 3. Refined Specifications.
From the results of the first two prompts, we concluded that the

LLMs knew the principles of RBAC and its components quite well.

There was no need (in our first attempt) to devise more detailed

specifications. This corresponds to the procedures usual developers

would follow as they often do not have a clear understanding of

the components of an RBAC system and therefore do not know

the functional and security requirements of such an access control

system in advance.

Step 4. Prompt Generation and Step 5. Code Generation. Based
upon the aforementioned observation, we simply asked the LLMs

to implement core RBAC concepts (cf. the third prompt in Fig. 15).

Both LLMs were then capable of generating code for a core RBAC

API. In particular, both LLMs implemented an interface with the

following functionality:

• addUserToRole(u,r): Adds user u to role r.

• removeUserFromRole(u,r): Removes user u from role r.

• addPermissionToRole(r,p): Adds permission p to role r.

• removePermissionFromRole(r,p): Removes permission p from

role r.

• hasPermission(u,p): Returns true if u has a role with permis-

sion p, otherwise false.

Both LLMs were also able to generate code for hierarchical RBAC

aswell as for Simple Static Separation of Duty (the last two prompts).

Google Bard used Java inheritance for its implementation of hierar-

chical RBAC and Static Separation of Duty.

To give a concrete example, Fig. 16 and Fig. 17 show the code

generated by ChatGPT and Google Bard for a method that checks

whether a user has a specific permission (a kind of policy decision

1 public boolean checkAccess(User user , Permission
permission) {

2 for (Role role : user.getRoles ()) {
3 if (role.getPermissions ().contains(

permission)) {
4 return true;
5 }
6 }
7 return false;
8 }

Figure 16: The checkAccessMethod Generated by ChatGPT.

1 public boolean hasPermission(String userId , String
permissionName) {

2 for (String roleName : userRolesMap.
getOrDefault(userId , Collections.emptySet
())) {

3 if (rolePermissionsMap.containsKey(
roleName) && rolePermissionsMap.get(
roleName).contains(permissionName)) {

4 return true;
5 }
6 }
7 return false;
8 }

Figure 17: The hasPermissionMethod Generated by Google
Bard.

point). One can see that each code snippet looks reasonable and

uses data structures for permission and user assignment. As a result,

LLMs seem to help developers with the task of implementing core

RBAC functionality. Employing LLMs, a developer, who might not

be familiar with RBAC concepts, has a basis for implementing this

code—this may reduce her workload (G2 [Workload]).

Step 6. Code Verification & Validation. As mentioned above, we

decided not to define formal specifications for the RBAC engine in

advance as developers often do not have a clear picture of the RBAC

system’s components. However, to address G3 [Verification] and
G4 [Validation], we had to provide specifications or more pre-

cisely rules that static vulnerability checkers usually require for

their work [9]. In our approach (see Fig. 4), we employ OpenJML

(both RAC and ESC) as the verification & validation tool, imply-

ing that we still need JML specifications as rules. As annotating

code is usually considered a burden, a more automated approach

is desirable. Automated specification inference, however, is also

a difficult task [13, 11, 21, 38]. For this reason, we decided to let

the LLM help us and generate JML specifications from the code

(in essence, doing specification inference for us). For this task, we

entered the following prompt:

“Can you provide JML specs for each public method, while the

code remains unchanged?”
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Table 2: Assessing Goals for LLM Assistants via Case Study
II.

Goal Step 1 Steps 2-3 Steps 4-5 Step 6

G1 [Knowledge] Significant Moderate Significant Moderate

G2 [Workload] Significant Moderate Significant Significant

G3 [Verification] N/A Moderate N/A Significant

G4 [Validation] Significant N/A N/A Moderate

1 //@ requires userId != null && permissionName !=
null;

2 //@ ensures \result == (\ exists String roleName;
userRolesMap.get(userId).contains(

roleName) && rolePermissionsMap.containsKey(
roleName) && rolePermissionsMap.get(roleName).
contains(permissionName));

Figure 18: JML specs for hasPermission Generated by Chat-
GPT.

1 //JML specification for hasPermission method
2 @Requires ({"userId != null", "permissionName !=

null"})
3 @Ensures("result elementof {true , false}")

Figure 19: JML specs for hasPermission Generated by Bard.

Fig. 19 and Fig. 18 depict the JML specifications for the has-
Permission method generated by Google Bard and ChatGPT, re-

spectively. The specifications produced by Google Bard are not

syntactically correct and furthermore do not seem to be helpful

(see Fig. 19, line 3), whereas ChatGPT’s JML specifications are close

to what is needed: They state, for example, that the user’s role set

must contain a role that has the requested permission, correctly

using JML’s exist expression (see Fig. 18). Having in mind that

such specifications should be handled with caution and must likely

be adjusted, they can be seen as good starting points alleviating

the specification burden (G2 [Workload]). Inference systems like

Daikon [11] can only provide likely invariants rather than giving

definitive results.

We finally used a slightly modified variant of the JML specifica-

tions with OpenJML’s ESC—ESC, but could not prove this specifica-

tion as it is in general beyond the capabilities of static checkers to

prove such complex specifications and hence future work is needed

to improve such validation tools in this direction. Beyond checking,

we can also feed inferred (and maybe adjusted) specifications back

to step 3 of our pipeline.

As with Case Study I, we also give a summary of the assessment

of the research goals we pursued (see Table 2). In particular, Step 6

contributes significantly to G2 [Workload] and G3 [Verification]
due to its specification-inference capabilities.

5.4 Results and Lessons Learned
We now summarize the tasks that we performed with LLM and also

report on our experiences.

(1) LLMs Can Generate Code from JML specifications for a Software
Application. LLMs were able to understand the JML specifica-

tions that we provided, similar to the specifications, for example,

depicted in Fig. 9(a). There was some inconsistency in the code

initially. However, overtime the code generation got improved

as the model got updated. Fig. 12 depicts a code excerpt that

has been generated by LLM-based on the given JML specifi-

cations, which in turn formulate the functional and security

requirements. As an implementation detail, one can see that

it generated Java inner classes for implementing the specific

functionality for managers, supervisors, and tellers.

(2) LLM Can Generate Non-trivial Requirements for a Software Ap-
plication. As mentioned in Sec. 4, we also requested ChatGPT

to complement and extend the functional and security require-

ments for our banking application. As shown in Fig. 14, we

asked ChatGPT to provide requirements based on the United

States Banking System and Protocols. As a response, ChatGPT

provided the following:

• Implement a createAccount method, which takes a Customer
object and an initial balance as parameters. It generates a new
account number, creates a new Account object, associates it with
the customer, and adds it to the accounts map.

• Implement a withdraw method, which returns a Boolean indi-
cating whether the withdrawal was successful. It checks if the
account exists and has sufficient balance before performing the
withdrawal.

• Add methods getAllAccounts and getAccountsByCustomer to
retrieve all accounts or accounts associated with a specific cus-
tomer, respectively.

(3) LLMs Can Understand, Generate, Infer, and Explain JML Speci-
fications. We conducted several experiments to find out if and

how far LLM can understand JML and its concepts (see below

for an example of how ChatGPT interprets JML specifications).

ChatGPT was aware of JML and how to use the specifications to

generate some basic related code from it. It could also generate

JML specifications itself, i.e., we formulated some requirements

of the Banking Application as textual prompts and requested

ChatGPT to produce JML specifications from them. In this task,

we had problems in finding the right English prompt for the

required specifications to be generated at first. After formulat-

ing the right prompt, however, we were able to generate the

JML specifications we expected. The generated code and the

specifications were moderate enough to require some or no

changes to them. It also seemed that ChatGPT could learn from

the conversations and was aware of the context.

Furthermore, ChatGPT was able to infer JML specifications

from Java code as demonstrated by the second case study.

(4) LLMs Can Understand, Generate, Explain, and Correct RBAC
Policies. We also requested ChatGPT for assistance on explain-

ing and implementing the RBAC policy shown in Sec. 5.2. We
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1 Can you give me a brief overview
2 of RBAC and how it can be integrated
3 in our existing code ?
4

5 Update the existing code to use
6 RBAC principles and do not limit
7 it's functionality to what we
8 already have achieved instead try
9 to add as many features and
10 functionalities as you can.

Figure 20: Sample Prompts for RBAC.

started with general prompts and then ask the ChatGPT to in-

corporate the explanations given into our application context.

As shown in Fig. 20, we first started with an initial request

(lines 1-3), which was later extended to a second one (lines

5-10), in which we encouraged ChatGPT to provide more de-

tailed, useful information. As a response, ChatGPT provided

some useful information, whose sample is shown next. Besides

functionality that could be directly added to the code shown in

Fig. 12, ChatGPT also suggested the need to implement a full

administrative system to allow for users to be properly assigned

roles, thus assisting on better preserving the security properties

shown in the RBAC policy of Sec. 5.2. Finally, ChatGPT also

suggested that the RBAC policy is implemented by introduc-

ing authorization code checks before attempting any banking

operation.

• Maintain User-Role Mapping: Establish a mechanism to map
users to their assigned roles. This mapping can be stored in
a database or another data structure. You can associate each
Customer object with a specific role or introduce a separate User
class that holds the role information.

• Role Assignment and Management: Provide functionality to
assign andmanage roles for users. This could include methods to
assign roles during user registration, modify roles based on user
promotions or changes in responsibilities, and handle revocation
of roles when necessary.

• Access Control Enforcement: Integrate RBAC into the existing
code by verifying the user’s role and permissions before exe-
cuting specific operations. For example, when creating a new
account, check if the user’s role allows the creation of accounts.
If not, deny the operation.

We incorporated some of this functionality to our case study

as relevant, and use the suggestions to generate more code-

producing prompts, following the guidelines described in Sec. 4.

(5) LLMs Can Correct Code Based on Feedback from Validation Tools
and Understand the Identified Problem.

Step 6 (verification step) in the first case study confirms that the

LLMs under study are able to understand JML specifications and

possible problems related to that code if given precise feedback.

In particular, LLMs can correct the code accordingly.

(6) LLMs Can Translate the JML Specifications to other Program-
ming and Annotation Languages. In another experiment, we

requested ChatGPT to translate the generated code plus the

1 public void Withdraw(double amount)
2 {
3 Contract.Requires(amount > 0);
4 Contract.Requires(balance >= amount);
5 Contract.Requires (! isFrozen);
6 Contract.Ensures(balance ==
7 Contract.OldValue(balance) - amount);
8

9 if (amount > 0 && balance
10 >= amount && !isFrozen)
11 {
12 balance -= amount;
13 }
14 }

Figure 21: Sample C# Code from JML Specs.

JML specifications to other programming languages and corre-

sponding annotation languages. When requesting C, it came

up with C code and corresponding ACSL (Frama-C) specifica-

tions; similarly, it produced C# code and .NET Code Contracts.

In an earlier ChatGPT session, however, it produced C# code

annotated with JML specifications, which is not the result we

expected. Also, we did not check if the specifications and the

code are actually correct. Fig. 21 shows a sample snippet of the

generated C# code along withs some DBC-like specifications.

6 CONCLUSIONS AND FUTUREWORK
In this paper, we have presented a pipeline approach as well as

the details and the lessons learned from our case study. We can

conclude that, when it comes to building applications using LLMs,

generating code from JML specifications seems to be a preferred

method compared to generating code directly from natural lan-

guage descriptions. This is because JML specifications are logical

expressions that represent a coherent chain of thought (Sec. 2.4)

derived from natural language descriptions or software require-

ment documents. Using a chain of thought in prompting aligns

with the “predicting next token” training objective and offers se-

quential guidance to LLMs. This guidance provides a consistent

context throughout the process of code generation. An accurate

code generation that adheres to security specifications will facil-

itate the correct implementation of security features of the final

application. As a result of the two case studies conducted, we can

conclude that LLM assistants provide moderate-to-significant as-

sistance to human developers when it comes to producing secure

applications leveraging our approach. We have identified the cases

when LLMs perform significantly well, e.g., code generation, as well

as tasks in which more work is needed, e.g., code verification and

validation. Overall, the combination of human and artificial intelli-

gence, facilitated by LLMs, formal specifications, and expert-level

human developers, seems promising as automated code generation

techniques evolve in the future.

As a part of future work, we plan to extend our case study to

consider other security models and techniques, as well as other ap-

plications. Also, we plan to experiment with different ways to create

prompts from JML specifications, as described in Sec. 4. Finally, we

also plan to incorporate feedback obtained throughout the different
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phases of our pipeline into a reinforcement learning approach, so

we can incorporate new knowledge such as effective prompts and

verified code into an existing LLM, thus potentially increasing its

chances of producing better code results in the future.
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