
PendingMutent: An Authorization Framework for Preventing
PendingIntent Attacks in Android-based Mobile Cyber-Physical

Systems
Pradeep Kumar Duraisamy Soundrapandian

pradeepkumarst@gmail.com
Vellore Institute of Technology
Chennai, Tamilnadu, India

Carlos Rubio-Medrano
carlos.rubiomedrano@tamucc.edu

Texas A&M University - Corpus Christi
Corpus Christi, Texas, USA

Jaejong Baek
jbaek7@asu.edu

Arizona State University
Tempe, Arizona, USA

Geetha S
geetha.s@vit.ac.in

Vellore Institute of Technology
Chennai, Tamilnadu, India

Abstract
PendingIntent (PI) is a key Android feature that allows one app to
delegate tasks to another while temporarily granting its permis-
sions. However, this can create security risks if amalicious app gains
control. Between 2020 and 2023, 106 CVEs highlighted such vul-
nerabilities. Our analysis of 180,606 apps found PI-related security
flaws in 2.21% (3,993 apps), leading to risks like privilege escala-
tion and unauthorized actions. Beyond mobile apps, PendingIntent
(PI) plays a key role in Mobile Cyber-Physical Systems (MCPS) by
enabling scheduled workflows and automating tasks. For instance,
in IoT and Smart Home Systems, PI manages temperature adjust-
ments based on preset schedules, while in Healthcare and Wearable
Devices, it triggers workflows like medication reminders or ortho-
pedic exercises for patients and the elderly. In industrial control
systems, PI automates machinery operations. In all these scenarios,
PI delegates control to a responsible component or app, which acts
on behalf of the delegating app. However, security vulnerabilities
could allow attackers to disrupt these operations.

To address this, we propose PendingMutent, a framework that
combines dynamic authorization with binary analysis to secure PI.
It verifies receiver permissions before execution, reducing attack
risks while keeping flexibility. We tested it on 85 benchmark apps
(including RAICC and StickyMutent) and five open-source applica-
tions. Results show PendingMutent effectively prevents PI-based
attacks with minimal performance impact (0.0015%), achieving an
F1-score of 88% for intra-app and 98% for inter-app analysis.

CCS Concepts
• Security and privacy→ Software and application security;
Software security engineering; Authorization; Formal security
models.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SaT-CPS ’25, June 4–6, 2025, PA, USA.
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1502-0/2025/6
https://doi.org/10.1145/3716816.3727972

Keywords
Android, PendingIntent, Permissions, Authorization, Privacy and
Trust

1 Introduction
Android is a widely adopted operating system worldwide, with
an increasing number of applications (apps) available for users.
In Q2 2024, Android users could choose from 2.26 million apps,
making Google Play the app store with the largest number of apps
available [11].

Android-based Mobile Cyber-Physical Systems (MCPS) are equi-
pped with advanced processors, diverse sensors and control APIs,
are well-suited for applications in the realm of MCPS, where the
physical and digital worlds are interconnected [51, 56]. In industrial
settings, these devices often handle sensitive tasks involving critical
system security data and proprietary enterprise information. This
integration highlights the necessity for robust security measures to
protect against potential threats [55]. Consumer protection systems
are evolving, with mobile apps providing real-time information on
product properties, health risks, manufacturers, and traceability.
The IoT-CPS concept seamlessly integrates with Android apps’
technological and computing capabilities [49].

This rapid expansion of MCPS system highlights the increasing
integration of IoT technologies in industrial sectors, enhancing op-
erational efficiency and connectivity. Despite efforts to maintain a
secure app environment, malicious applications continue to emerge.
For instance, in November 2024, cybersecurity firm McAfee identi-
fied 15 malicious loan apps, known as "SpyLoan" apps, which had
been downloaded onto 8 million Android devices [61].

Android by default grants apps with minimal privileges, addi-
tional permissions like reading the GPS or making phone calls are
granted upon explicit request through AndroidManifest.xml during
installation. Malicious apps usually request minimal permissions
and then try to collude with privileged apps and at runtime they
acquire permissions via PendingIntent (PI). Detecting permission
exploitation in colluding Android apps is challenging [65], as they
dynamically alter behavior to evade detection. Static analysis often
fails due to obfuscation and dynamic code loading [64]. These apps
distribute malicious tasks across multiple applications, each request-
ing minimal permissions, making them appear benign individually.

https://orcid.org/0000-0002-1085-4005
https://orcid.org/0000-0001-8931-6412
https://orcid.org/0000-0001-8588-3524
https://orcid.org/0000-0002-6850-9423
https://doi.org/10.1145/3716816.3727972

SaT-CPS ’25, June 4–6, 2025, PA, USA. Pradeep Kumar Duraisamy Soundrapandian, Carlos Rubio-Medrano, Jaejong Baek, and Geetha S

PendingIntent (PI) is a key attack vector, enabling unauthorized
access through inter-app communication. Effective mitigation re-
quires dynamic monitoring of PI exchanges, runtime behaviors, and
inter-app interactions to detect and prevent sophisticated threats.

In this paper, we examine the security challenges associated with
Android PI misuse, which is essential for app collaborations such as
triggeringworkflows in response to conditions, scheduled events, or
external inputs. Components like AlarmManager and JobScheduler
play a key role in designing mobile CPS systems. For instance, a
health monitoring app may trigger alerts from abnormal sensor
readings, while a smart home system automates device control in
response to environmental changes.

Android PendingIntent (PI) enables secure task delegation by
granting temporary permissions to a receiving app, but it also
introduces security risks, including privilege escalation (PE) and
unauthorized access [33, 40, 44]. An empty base Intent in a PI is
particularly vulnerable, allowing attackers to modify it for external
component invocation [33, 43]. Additionally, malicious actors can
trigger a PI unexpectedly, disrupting the source app’s workflow
and leading to unauthorized PendingIntent invocation (UPiI) at-
tacks [40]. StickyMutent [40] uses an ownership-based model [12]
to encapsulate PendingIntent (PI) and prevent unauthorized access.
However, unwrapping the PI grants the receiver the sender’s execu-
tion rights, which can lead to privilege escalation and unauthorized
actions, highlighting a lack of fine-grained access control.

To address this, we propose PendingMutent, a framework that
secures PI interactions through dynamic capability-based autho-
rization, binary analysis, and encapsulation within Ownership-
Domain [54]. Ownership-Domain classifies PI operations as priv-
ileged or general, restricting sensitive actions (e.g., cancellation)
while allowing general actions (e.g., invocation) by external apps.
PendingMutent enforces capability-based access control by inte-
grating Ownership-Domain with permissions, ensuring actions like
phone calls require PHONE_CALL. While permissions support secu-
rity, binary analysis is key to detecting vulnerabilities like Privilege
Escalation in PI [9].

PendingMutent performs binary analysis within Ownership-
Domain to mitigate PI vulnerabilities, preventing apps with con-
flicting permissions or exploit-prone behavior from invoking PI.
This paper aims to address the following research questions:

• RQ1: How effective is PendingMutent in preventing various PI
attacks?
• RQ2: How does the effectiveness of PendingMutent compare to
other similar tools in the literature?
• RQ3: How easy is it for an app to transition from the Android’s
PI to PendingMutent?

To answer these research questions, we conducted an exploratory
analysis on a dataset of 107,580 benign and 9,999 malware apps
from a popular Android dataset [25]. Additionally, we crawled
38,246 Google Playstore apps and 22,732 Androzoo apps [5] to cross-
validate vulnerabilities. We also examined 654 telecom apps from
six major providers and 1,395 OEM apps from three top handset
vendors to assess firmware vulnerabilities, sourcing these fromAPK
Combo [13] and APK Mirror [59].

Our exploratory analysis revealed PI-based attacks, including un-
safe PI creation and transfer leading to unauthorized PI invocation

(UPiI) and Privilege Escalation (PE) attacks. Out of 180,606 apps,
3,993 expose unsafe PI linked to PE attacks, and 20.95% (37,837)
have both implicit and broadcast methods to share PIs, making
them vulnerable to UPiI attacks.

To evaluate our approach, we implemented PendingMutent as a
pluggable Java library, offering developers a secure alternative to
the native Android PI library.

In summary, PI-based attacks typically stem from insecure cre-
ation practices and the uncontrolled retrieval of PendingIntents by
external system components, such as SliceProviders, Notifications,
MediaBrowserServices, etc. Additionally, these attacks often exploit
privileged methods on the retrieved PI. Replacing Android’s native
PI with PendingMutent prevents malicious receivers from accessing
the encapsulated PI and performing privileged operations.

Testing with 85 benchmark applications showed 100% precision,
78. 3% recall, F1 scores of 0.88 for intra-app analysis, and 100%
precision, 95. 7% recall, F1 scores of 0.98 for inter-app analysis,
outperforming state-of-the-art methods such as RAICC [33] and
StickyMutent [40]. Our contributions are summarized as follows:

(1) Scenario Apps - We offer nine real-time apps that demonstrate
attack scenarios like Privilege Escalation and Unauthorized PI
Invoke (§2.2),

(2) A Formal Model - We present a theoretical framework, termed
asPendingMutent, developed upon the principles of Ownership-
Domain, for facilitating secure PI-based communication (§4).

(3) A Pluggable Library - To evaluate PendingMutent, we devel-
oped a pluggable Java library (∼1200 LoC) that can replace the
Android PI library (§5).

As part of our commitment to open and reproducible science,
we made PendingMutent and our experimental results available 1.

2 Background
We start by providing an introduction to PI and its behavior (§2.1),
followed by an illustrative example for the rest of the paper (§2.2),
and the classification of PI vulnerabilities (§2.3).

2.1 PendingIntent
Android apps run in a secure sandbox, restricting access to sensitive
resources and requiring permissions (e.g., INTERNET) for external
access [62].PI acts as an authorization token, allowing a sender app
(source) to delegate tasks and temporarily transfer its permissions
to a receiver app (delegatee).

Android uses Intents for inter-component communication, allow-
ing apps to request actions from other components. PI is a special
type of Intent that grants temporary execution rights to another app
while preserving the sender’s permissions. In simple terms, while
an Intent triggers actions immediately, a PendingIntent lets another
app execute the action at a later time with the sender’s permissions.
The PI’s base Intent can be empty, explicit, implicit, or broadcast,
each with distinct security implications. Empty base Intents are
highly vulnerable to Privilege Escalation, while implicit/broadcast
Intents risk Unauthorized Intent Receiver attacks [44, 53]. Explicit
Intents are safer. Despite Android’s best practices, our analysis

1https://anonymous.4open.science/r/tools-1486/

PendingMutent: An Authorization Framework for Preventing PendingIntent Attacks in Android-based Mobile Cyber-Physical Systems SaT-CPS ’25, June 4–6, 2025, PA, USA.

Figure 1: A Privilege Escalation Attack: the ShoppingCart
app delegates an unsafe PI via broadcast 1○, which is received
by Malware-2 2○ and modified to perform a phone call (Priv-
ilege Escalation) 3○. 4○Workflow disruption by malware by
invoking Exit activity before the required condition. 5○ The
PI invoked by CovidAlarm is affected by Malware-2’s Unau-
thorized PI Invoke (UPiI).

shows 1.7% of Google Play Store apps use vulnerable PI transfers,
indicating poor coding practices in real-world apps.

PI includes seven flags that can be combined to define its oper-
ational characteristics. For example, FLAG_ONE_SHOT ensures the
receiver can use the PI only once, reducing the risk of replay at-
tacks [7]. Conversely, FLAG_IMMUTABLE prevents the receiver from
modifying an existing PI, while FLAG_MUTABLE allows inline replies
or bubbles, enabling user interaction with a PI via notifications.

Starting from build version UPSIDE_DOWN_CAKE, Android al-
lows the use of FLAG_ALLOW_UNSAFE_IMPLICIT_INTENT, which by-
passes checks for creating a PI with FLAG_MUTABLE and an implicit
Intent [2]. However, misuse of this flag could lead to Unauthorized
PI Invoke and Privilege Escalation attacks.

2.2 Illustrative Example
To illustrate vulnerabilities related to PI in a mobile-powered Cyber-
Physical System (MCPS), consider a shopping cart app designed
for a consumer-centric supply chain model that fulfills household
orders [66]. This app enhances location-based safety by interacting
with other apps, such as a COVID tracker, when the user enters a ge-
ofence area. The app can send an explicit PendingIntent to apps like
Exposure Notifications [47] or use an implicit/broadcast Pending-
Intent for crowd-sourced apps like Outbreaks Near Me [60]. While
explicit communication is secure, it limits app collaboration [29].

Both implicit and broadcast methods of sharing PendingIntents
are vulnerable due to the lack of dynamic validation, which leaves
them susceptible to unauthorized access and potential attacks like
UPiI and PE. In the context of mobile-powered CPS, this implic-
it/broadcast communication, if not properly secured, could allow
attackers to manipulate sensitive location data or trigger unautho-
rized actions, posing significant risks to both personal safety and
CPS security.

The device contains two benign apps: ShoppingCart and Covi-
dAlarm (as shown in Fig. 1), which are granted with permis-
sions such as ACCESS_FINE_LOCATION, ACCESS_COARSE_LOCATION,
CALL_PHONE, and INTERNET. The scenario unfolds as follows:

• When the user enters a geofence-tagged shoppingmall that tracks
COVID-19 population density, the ShoppingCart app allows them
to scan item barcodes and add them to their cart.
• Upon entering the geofence, using implicit/broadcast method
the ShoppingCart app delegates its geofence information to the
CovidAlarm app by creating a PendingIntent, which maps to
callback components pointing to the exit activity and includes
the app’s current geolocation.
• The CovidAlarm app tracks population density within specific
geographic areas using third-party geofencing services.
• When the area becomes unsafe (e.g., crowd density exceeds the
threshold), the CovidAlarm app triggers the ShoppingCart’s PI,
which invokes the app’s "Exit Activity" to finalize the purchase
and proceed to payment.

2.3 Known PI Vulnerabilities and PI Attacks
We categorize PI vulnerabilities into three types: (1) creation vul-
nerabilities, (2) the method of exchanging PI between components,
and (3) behavioral logic between collaborating apps.

Vulnerabilities by Creation - When a PI is created with an
empty base Intent (unsafe PI), it allows attackers to perform Privi-
lege Escalation (PE) by modifying the base Intent [33, 44].

In Fig.1, the ShoppingCart app, granted with CALL_PHONE per-
mission, creates a PI with an empty base Intent and delegates it
via an implicit Intent, making it vulnerable to attacks. A malicious
app (Malware-2) that lacks phone call privileges intercepts the PI
and modifies the base Intent to initiate a call to its chosen number
(Fig.1 3○). This kind of attack is an example of privilege escalation,
and any app containing code that exploits PI can be classified as mal-
ware. Notable vulnerabilities include CVE-2023-20950 [21], which
involved AlarmManagerActivity.java, and CVE-2023-20962 [22],
where unsafe PI creation in MediaVolumePreferenceController.java
led to a Privilege Escalation attack, such as the one reported in
Samsung Reminder [19].

Vulnerabilities by Transfer - Signature permissions restrict
access to a PI, allowing only apps signed with the same key as the
sender to use it. However, if a benign app with the same key as
the sender re-wraps the PI and broadcasts it, it can inadvertently
delegate the protected PI with other apps, including malicious ones.
This opens a potential attack vector, allowing unauthorized access
to the PI [40]. Re-wrapping a base Intent into a new PI and re-
distributing it can lead to Privilege Escalation attacks, as seen in
CVE-2023-35676 [23]. This vulnerability can result in Unauthorized
PI Invokes and Privilege Escalation attacks.

Vulnerabilities by Design - This type of vulnerability arises
when an app is poorly designed and fail to consider the side effects
of a PI invocation by a receiver app, leading to an Unauthorized
PI Invoke attack. In this study, we assume that a well-behaved app
follows the correct PI workflow by avoiding base Intent modifica-
tions or redistributing the PI through implicit Intents. The PI allows
for deferred activation of the base Intent following a specific work-
flow. Unauthorized triggers disrupt this workflow, as seen in the
ShoppingCart example, where an unauthorized trigger (Fig.1 4○)
that notifies of crowd bursts in a geofence prematurely interferes
with the ShoppingCart app’s intended call (Fig.1 5○), potentially
harming sales by forcing the app to exit the geofence.

SaT-CPS ’25, June 4–6, 2025, PA, USA. Pradeep Kumar Duraisamy Soundrapandian, Carlos Rubio-Medrano, Jaejong Baek, and Geetha S

Dataset #Apps #C #I #PI 1s Nc Cc Uc Im #PI(C) #PI(T) #a(PI(T)) %PI(T) %Vulnerable
Apps

Target
SDK

AutoPsy(Benign) 107580 31866422 3736384 119626 3952 1659 12191 23769 393 20136 6325 3151 31.41 2.93 < = 27
AutoPsy(Mal) 9999 3884854 458406 14413 447 180 1337 2857 24 2465 798 68 32.37 0.68 < = 27
Androzoo 22732 49298913 995004 57829 5298 1968 6271 22697 199 7808 217 115 2.78 0.51 < = 32

Google Playstore 38246 80268387 2071370 108550 8108 2099 9822 35876 3282 9735 1249 652 12.83 1.70 < = 32
OEM 1395 3362400 100903 8874 531 247 966 4562 64 437 1 1 0.23 0.07 < = 31

Telecom 654 3319228 67289 6125 557 283 661 2574 30 473 13 6 2.75 0.92 < = 30
Total 180606 172000204 7429356 315417 18893 6436 31248 92335 3992 41054 8603 3993 20.95 2.21 -

NOTE:
#𝐶 - No.of.Classes #𝐼 - No.of.Intent #𝑃𝐼 - No.of.PendingIntent 1𝑠 - FLAG_ONE_SHOT 𝑁𝑐 - FLAG_NO_CREATE 𝑈𝑐 - FLAG_UPDATE_CURRENT
𝐼𝑚 - FLAG_IMMUTABLE #𝑎(𝑃𝐼 (𝑇)) - No.of.Apps with Unsafe PI Transfer 𝑃𝐼 (𝐶) - Unsafe PI Creation 𝑃𝐼 (𝑇) - Unsafe PI Transfer
%𝑃𝐼 (𝑇) - Percentage of Unsafe PI Transfer %𝑃𝐼 (𝑇) = (#𝑃𝐼 (𝑇)/#𝑃𝐼 (𝐶))*100 %𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑙𝑒𝐴𝑝𝑝𝑠 = 100 *

∑ (
#𝑎(𝑃𝐼 (𝑇))

)
/#𝐴𝑝𝑝𝑠 𝐶𝑐 - FLAG_CANCEL_CURRENT

Table 1: Empirical Study with AndroPsy, Androzoo, OEM, Telecom, and Google Playstore Datasets.

The severity of the attack depends on the PI’s behavior. For
example, an attack on a PI with the FLAG_ONE_SHOT could prevent
the actual receiver from using it again, causing non-deterministic
behavior. While FLAG_IMMUTABLE can indicate that a PI should not
be altered after creation, attackers can still trigger it to disrupt the
sender app’s predefined workflow.

Thus, unsafe use and implicit transfer of PI’s can result in both
Privilege Escalation and Unauthorized PI Invoke attacks. Below,
we provide an exploratory study to identify such vulnerabilities in
real-world applications.

3 An Exploratory Empirical Study
We conducted an empirical study on PI attacks, including Privi-
lege Escalation and Unauthorized PI Invocation (UPiI), using two
data sources: (1) reported Common Vulnerabilities and Exposures
(CVEs) and (2) app datasets, including real-world apps from the
Google Play Store (Table 1). The first PI attack in 2014 [15] exploited
a Privilege Escalation flaw in Android versions before 5.0, grant-
ing SYSTEM UID access. By 2024, 107 PI-related attacks had been
reported, comprising 19 UPiI and 88 Privilege Escalation cases.

Methodology. Following the approach used in StickyMutent
[40], we collected real-world evidence of PI-based attacks from
various Android app datasets. Our study involved the following
datasets:
• Androzoo [5, 34]: A collection of 24 million APK files, from
which we queried 22,732 APKs dated between January 2020 and
October 2022.
• Andro-AutoPsy [25, 67]: This dataset consists of 107,580 benign
and 9,999 malware apps.
• OEM and Telecom apps: A total of 2,049 preloaded device apps
were collected from third-party app stores such as ApkMirror
[59] and APK Combo [13].
• Google Play Store: We collected 38,246 random apps from cat-
egories such as Maps & Navigation, Strategy, Weather, and
Productivity.
In total, our study analyzed 180,606 APKs. For this empirical

study, we utilized theMurax APK binary analysis tool [40] to extract
key information, such as: (1) Identification of implicit PI creation, (2)
Flags used in PI creation, and (3) Transfer or leakage of vulnerable
PI’s through implicit Intents. Our system configuration included a
Lenovo Windows x64 PC with an Intel i5-7200U CPU @2.50GHz,
2701 MHz, 2 Cores. Processing a 28 MB APK file with 25,570 classes
took approximately 57 seconds to generate CSV output.

Overall Results. The results of our empirical study, summarized
in Table 1, are as follows:

(1) Out of 315,417 PI’s analyzed, 41,054 were created with an empty
base Intent, demonstrating Vulnerability by Creation, which
can lead to privilege escalation attacks.

(2) 8,603 PI’s were transferred through implicit Intents, illustrating
Vulnerability by Design, which may result in Unauthorized PI
Invocation (UPiI) or PE attacks.

(3) 20.95% of PI’s pose a potential risk for PE attacks.
(4) 1.7% of Google Play Store apps (652 apps) exhibited vulnerable

PI transfers.
(5) Overall, 3,993 apps (2%) demonstrated Vulnerability by Transfer,

leading to possible PE attacks.
(6) Out of 654 telecom apps, 6 exhibited unsafe PI transfers, while

only 1 out of 1,395 OEM apps showed such vulnerabilities.

Our analysis confirms the empirical tool’s robustness against
Proguard/R8-obfuscated apps [63], a technique used by about 25%
of apps on Google Play [45]. However, it has limitations in detecting
dynamic code loading and analyzing web-based content [16, 24].
Our study underscores real-world PI vulnerabilities enabling attacks
like PE and UPiI.

4 Our Approach: PendingMutent
We introduce PendingMutent, a dynamic capability-based autho-
rization framework leveraging the Ownership-Domain [54]. It em-
ploys binary analysis to encapsulate PI objects, restricting direct
receiver access. By enforcing high-level policies, PendingMutent
regulates ICC object operations across security domains.

4.1 Theoretical Model
Permissions. The Android permissions set (Ω) categorizes app
access levels, while Android services (Υ) define actions via PI, like
calls or SMS [52]. Custom permissions [3] are excluded during eval-
uation, but the framework’s set-theory model can accommodate
them without modification, as they are a subset of standard per-
missions. PendingMutent can handle custom permissions without
modifying its core mechanism. It uses a set-theory model to manage
app permissions and their relationships. Since custom permissions
are a subset of Android’s standard permissions, PendingMutent
can be easily expanded to support them. Custom permissions allow
precise control over specific components within an app, such as
granting App B access to App A’s specific component 𝐴𝑥 only if it

PendingMutent: An Authorization Framework for Preventing PendingIntent Attacks in Android-based Mobile Cyber-Physical Systems SaT-CPS ’25, June 4–6, 2025, PA, USA.
Ω = { normal, signature, dangerous, systems}
Υ = { Maps, Calls, SMS, ...}
Γ (𝐴) = {∃p; where 𝑝 ∈ Ω}
𝛾 (𝐴) = { ∃g; where g ⊆ Γ (𝐴) }
𝛾 (𝑐𝑖 , 𝐴) = 𝛾 (𝐴)
𝛾 (𝜐 ∈ Υ) = 𝜔 ⊆ Ω

𝜏𝐴 = new Intent(X)
X = ∅ | S

𝑃𝐴 = new PendingMutent(A, 𝑟𝑐 , 𝜏𝐴 , 𝐹)

creator(𝑃𝐴) = A

𝜋𝐴 = 𝑔𝑒𝑡𝑃𝐼 (𝑃𝐴)
𝑐𝑖 = {𝐴𝐶𝑖 , 𝐵𝑅 𝑗 , 𝑆𝑅 𝑗 } where 𝑖 ∈ 1..𝑛, 𝑗 ∈ 0..𝑛

𝐶𝐴 = {𝑐𝐴𝑖 ; where 𝑖 ∈ 0..𝑛}

𝐾𝐴 = {𝜏𝐴𝑖 | 𝜋𝐴 ; where 𝑖 ∈ 0..𝑛}

(1)

Figure 2: Grammar for PendingMutent

has the required custom permission. PendingMutent extracts and
validates all declared permissions, including custom ones, during
its permission validation process.

When an app (e.g., 𝐴) is installed, it requests permissions Γ(𝐴)
in Manifest.xml. The granted permissions 𝛾 (𝐴) form a subset of
these, i.e. 𝛾 (𝐴) ⊆ Γ(𝐴). The method 𝛾 (𝑐𝑖 , 𝐴) retrieves permissions
for a component, the method 𝛾 (𝜐 ∈ Υ) retrieves the permissions
for a service request, where each permission 𝜔 belongs to the
permissions set Ω.

Ownership-Domain. The Ownership-Domain is rooted in the
World context and mapped to the device, where each app estab-
lishes its own domain consisting of a component domain (𝐶𝐴) and
a capability domain (𝐾𝐴). The component domain 𝐶𝐴 includes
elements such as Activities (𝐴𝐶𝑖), BroadcastReceivers (𝐵𝑅𝑖), and
Services (𝑆𝑅𝑖) as defined in the app’s Manifest.xml. Using the an-
droid:exported attribute, an app can control which of its compo-
nents are visible to other apps. The Capability Domain (𝐾𝐴) in
PendingMutent provides a structured access control mechanism
for PendingIntent, ensuring that only authorized applications can
perform specific actions. It categorizes operations based on sen-
sitivity, allowing general actions (e.g., send(..)) while restricting
privileged operations (e.g., modifying or canceling PendingIntent).
This approach dynamically validates receiver permissions, prevent-
ing unauthorized access, privilege escalation, and security breaches.
By enforcing execution constraints, the Capability Domain miti-
gates potential threats in Android inter-component communication,
particularly in scenarios involving workflow delegation and event-
driven triggers. The formal definitions of the utility functions are
provided in Fig 2.

ICC Object Creation. Intent objects (𝜏𝐴) are created with
the statement 𝑛𝑒𝑤 𝐼𝑛𝑡𝑒𝑛𝑡 (𝑋), where 𝐴 is the source context
and 𝑋 can be an action string [52], or a target component
class, or an empty value. PendingMutent (𝑃𝐴) is created using
𝑛𝑒𝑤 𝑃𝑒𝑛𝑑𝑖𝑛𝑔𝑀𝑢𝑡𝑒𝑛𝑡 (𝐴, 𝑟𝑐 , 𝜏𝐴, 𝐹), where 𝐴 is the app context that
creates it, 𝑟𝑐 is the request code, 𝜏𝐴 is the base Intent object, and 𝐹
represents the PI flags (FLAG_ALLOW_UNSAFE_IMPLICIT_INTENT
| FLAG_CANCEL_CURRENT | FLAG_IMMUTABLE | FLAG_MUTABLE |
FLAG_NO_CREATE | FLAG_ONE_SHOT | FLAG_UPDATE_CURRENT) (for
details refer Section 2.1). Creating a PendingMutent (𝑃𝐴) with an

Figure 3: An illustration of capability-based Ownership-
Domain with PI creation and access enforcement.

empty base Intent (𝜏𝐴 = ∅) results in an unsafe Pending Intent (ref.
Section 2.3). The utility function 𝑔𝑒𝑡𝑃𝐼 (𝑃𝐴) retrieves the encapsu-
lated PI object (𝜋𝐴), as shown in Fig 2. This function is intended
for functional software testing [26, 32] and can only be invoked by
the application that created 𝑃𝐴 .

Thwarting PI Operations. An attacker can exploit an unsafe PI
to perform a Privilege Escalation attack by altering the base Intent.
To prevent this, we propose a subdomain relationship that restricts
components in the component domain (𝐶𝐴) from executing certain
operations on encapsulated PI within the capability domain (𝐾𝐴).

This subdomain relationship is classified into two types based
on operational privileges: (1) the non-privileged access permission
relationship (dotted arrow, Fig 3 1), and (2) the privileged creation
permission relationship (double arrow, Fig 3 2).

A component domain with creation permission can create PI in
the capability domain and update/mutate its encapsulated PI, repre-
sented as (𝐶𝐴⇒ 𝐾𝐴). The privileged methods (𝜌) that allow CRUD
operations (create, read, update, and delete) on the encapsulated
Pending Intent are outlined below.
• 𝑀𝑐 - Methods to create a new PI object - e.g. getActivity(..), get-
Service(..), getBroadcast(..)
• 𝑀𝑑 - Methods to cancel/delete a PI- e.g. cancel()
• 𝑀𝑚 - Methods to modify the base Intent of a PI- e.g. send(..Intent
intent_obj..), sendIntent(..Intent intent_obj..)

𝜌 = {𝑀𝑐 , 𝑀𝑑 , 𝑀𝑚 } (2)

PendingMutent prevents accidental mutation of the encapsulated
PI object located within the capability domain by confining the cre-
ation permission only to the component domain of the PI creator
apps (a.k.a. the parent of PI). This permission is non-transferable
between applications, thereby preventing unauthorized applica-
tions from performing privileged operations on the encapsulated PI
object. (Note: Shared UID is not considered, as Google discourages
its use and may remove it in future Android versions [4]).

Conversely, non-privileged access permission (dashed arrow,
Fig 3 1) is granted to non-privileged deputies (𝜂) that would not
modify the internal state of the encapsulated PI object, represented
as (𝐶𝐴 d 𝐾𝐴). This non-privileged access permission is transitive
and can be transferred between apps during ICC.

SaT-CPS ’25, June 4–6, 2025, PA, USA. Pradeep Kumar Duraisamy Soundrapandian, Carlos Rubio-Medrano, Jaejong Baek, and Geetha S

• 𝑀𝑠 - send(..), which invokes the PI to perform the pre-defined
task without modifying the PI’s base Intent.

𝜂 = {𝑀𝑠 } (3)

Therefore, when a component from the component domain at-
tempts to access the encapsulated PI object (solid arrow, shown in
Fig 3 3), the allowed operations depend on the permissions the
component domain holds over the capability domain.

App Behavior. The function 𝑐𝑟𝑒𝑎𝑡𝑜𝑟 (𝑃𝐴) returns the app that
creates the PendingMutent. The function 𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟 (𝐴) (Equation 4)
evaluates app A for the existence of PI unsafe PI vulnerable codes.

𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟 (𝐴) =
{
𝑀𝐴𝐿𝑊𝐴𝑅𝐸, if binary analysis of A has exploit,
𝐵𝐸𝑁𝐼𝐺𝑁, otherwise.

(4)

The method behavior(A) does a binary analysis of application A
for PI vulnerabilities (discussed in Section 2.3). If vulnerable code is
detected, the app is classified as malware; otherwise, it is classified
as benign.

PI Target Analysis. Android’s PI provides lazy execution of the
operations associated with the encapsulated base Intent. This lazy
callback invokes the target components located within the same
app or other apps or Android core services (e.g. Notification Man-
ager Service (NMS), Location Manager Service (LMS), Telephony
Manager Service, etc.).

The method piTarget(𝜈𝑌 , 𝜋𝐴) (Equation 5) takes three parame-
ters, (1) the invoking context (𝜈𝑌) - representing app that invokes
the PI, (2) the PI (𝜋𝐴) - specifying the target component invoked
by the PI, (3) isMu(𝜋𝐴) - a boolean specifying whether the PI (𝜋𝐴)
has been modified (T) or not (F).

𝑝𝑖𝑇𝑎𝑟𝑔𝑒𝑡 (𝜈𝑌 , 𝜋𝐴, 𝑖𝑠𝑀𝑢) =



𝑐, where 𝑐 ∈ {𝐶𝐴 ∨ Υ }
∧ isMu(𝜋𝐴) == F
∧ behavior(Y) == (BENIGN | MALWARE)

𝑑, where 𝑑 ∈ {𝐶𝐴 },
∧ isMu(𝜋𝐴) == T
∧ behavior(Y) == (BENIGN | MALWARE)
∧ 𝛾 (𝑑) ∈ 𝛾 (𝑌) ; ∧𝛾 (𝑑) ∈ 𝛾 (𝐴)

𝐿𝐸𝐴𝐾, otherwise.

(5)

Table 2 specifies the classification of the invoking context into benign or
malware based on the binary analysis of the invoking context for unsafe
PI vulnerabilities. It considers whether the PI points to components inside
or outside the ownership domain and if its base Intent is modified during
transit, potentially breaking source application integrity.

The first column, "target," uses 1 to indicate that the invocation targets a
component within the creator app’s domain (𝐶𝐴) and 0 for invocations of
external Android services or components outside𝐶𝐴 . The second column
shows the creator app’s permissions for the action, while the third displays
the receiver app’s permissions (the invoking context). If binary analysis
detects unsafe code in the invoking context, the app is classified as malware
regardless of permissions. Otherwise, PendingMutent verifies that the in-
voking context has the required privileges (i.e., 𝛾 (𝜈,𝑌) ⊆ 𝛾 (𝐴)) to perform
the requested action, assuming the source app holds those privileges.

Figure 4 illustrates three cases where the PI’s base Intent is modified
during the transit: a benign invocation within the creator’s domain; a be-
nign external service invocation when the receiver’s permissions match
the creator’s; and a malware classification when the receiver’s permissions
are valid for an external service invocation but the creator lacks the corre-
sponding permission.

Accessing Encapsulated PI. Access to the PI within the capability
domain (𝐾𝐴) is controlled by Equation 6. The method 𝜒 (𝜐𝑌) invokes the
PI (𝜋𝐴) with the current context 𝜐𝑌 . If the invoking context risks a PI leak,

target
(1 - Inside;
0 - Outside)

Can PI Source
perform the
PI Action?

(Source Context)

Can PI Receiver
perform the
PI Action?

(Invoking Context)

Is PI modified
(by receiver (yes ∥ no)

while delegating between apps)

Is Receiver
(Benign, or
Malware)

1 1 no Benign
2 1 no Benign
3 1 no Benign
4 1 no Benign
5 0 no Benign
6 0 no Benign
7 0 no Malware
8 0 no Malware
1 1 yes Benign
2 1 yes Benign
3 1 yes Benign
4 1 yes Benign
5 0 yes Benign
6 0 yes Malware
7 0 yes Malware
8 0 yes Malware

Table 2: Classifying the receiver by invocation target, sender,
and action execution ability.

Figure 4: Illustrating the receiver classification, highlighted
rows from Table 2.

access is denied; otherwise, it is granted. Equation 7 illustrates the capability
domain of app A (𝐾𝐴), which contains the PI object.

𝜒 (𝜐
𝑌) (𝜋𝐴) =

{
𝐷𝐸𝑁𝑌, if piTarget(𝜐𝑌 , 𝜋𝐴) == LEAK
𝐺𝑅𝐴𝑁𝑇, otherwise.

(6)

𝐾𝐴 = 𝜒𝐴 ⟦ 𝜋𝐴𝑖 ⟧, where i ∈ 1..n (7)

This section explains how PI invocation is restricted based on the behav-
ior of the invoking context and the targeted actions of the PI. It also details
the level of access (𝜒) granted to the invocation context, defining the types
of operations permitted in PendingMutent.

The 𝜓 function (Equation 8) validates whether the invoking context
exhibits a subsumption relationship (⪯) with the PI creator app. The sub-
sumption relationship emphasizes the hierarchical relationship between
applications and their upgrades installed on the device. If such a relationship
exists, the invoking context is assumed to have the privileged permission
(→), or else the invoking context is assumed to have non-privileged access
permission (d).

𝜓 (𝜐
𝑌) (𝜋𝐴) =


⇒, if 𝑌 ⪯ 𝐴 ∧ 𝜒 (𝜐𝑌) (𝜋𝐴) == GRANT
d, if 𝑌 ⪯̸ 𝐴 ∧ 𝜒 (𝜐𝑌) (𝜋𝐴) == GRANT
↛, otherwise

(8)

PendingMutent manages access to the PI by evaluating the receiver’s
privileges and behavior, including susceptibility to exploit code (Equation 4)
and potential leaks (Equation 5). Based on these evaluations, it determines
the operations allowed on the encapsulated PI. The PendingMutent’s sub-
sumption property (𝑌 ⪯ 𝐴) ensures compatibility with future app updates.

Validating the Invoking Context. The Ξ function (Equation 9) checks
whether the invoking context has a subsumption relationship with the
PI creator. If so, it grants 𝜌 access; otherwise, it grants 𝜂 access to other
applications or denies it entirely.

PendingMutent: An Authorization Framework for Preventing PendingIntent Attacks in Android-based Mobile Cyber-Physical Systems SaT-CPS ’25, June 4–6, 2025, PA, USA.

Figure 5: Illustrating the Ownership-Domain capability en-
forcement during ICC between benign apps, source app A
and the receiver app B.

Ξ(𝜐
𝑌) (𝜋𝐴) =


𝜌, if𝜓 (𝜐𝑌) (𝜋𝐴) ==⇒
𝜂, if𝜓 (𝜐𝑌) (𝜋𝐴) ==d
𝐷𝐸𝑁𝑌, otherwise.

(9)

Π (𝜐
𝑌) (𝜋𝐴, 𝑜𝑝) =

{
𝐺𝑅𝐴𝑁𝑇, if 𝑜𝑝 ∈ (Ξ(𝜐𝑌) (𝜋𝐴))
𝐷𝐸𝑁𝑌, otherwise.

(10)

The Π function (Equation 10) executes the requested operation on the
encapsulated PI if the necessary permissions are granted; otherwise, the
operation is denied.

Inter-App Ownership-Domain Relationship. Android ICC allows
components of an Android app to exchange information and coordinate
functionalities. Proper implementation is crucial for building efficient apps.
The Ownership-Domain encapsulates objects and operations, protecting
them from malware attacks. By encapsulating PI and their operations from
the components that access them, the Ownership-Domain shields the object
from malware attacks. In this section, we provide a detailed explanation of
the access based on the Ownership-Domain between applications.

Fig 5 illustrates two benign apps, A and B. By default, an app’s compo-
nent domain holds both creation and access permissions to the app’s own
respective capability domain (Fig 5 1 , 2). When app A delegates its PI

to app B, B gains access to A’s capability domain (Fig 5 3). However, the
component 𝑐1 from𝐶𝐵 can only invoke non-privileged methods (𝑀𝑠) on
the delegated PI (𝑝𝑎) (Fig 5 4). Despite delegating the PI (𝑝𝑎) to app B, app
A retains control over privileged methods. For example,𝐶𝐴 can cancel the
active PI (𝑝𝑎) by calling the privileged method𝑀𝑑 [10]. This demonstrates
how PI delegation between apps can provide controlled access to certain
actions while maintaining security over sensitive operations.

4.2 System Architecture
PendingMutent consists of five modules (as illustrated in Fig 6): (1) Decision
Controller, (2) APK Query Module, (3) App Knowledge, (4) APK Introspect,
and (5) PI Access Validator. The details of each module are explained in the
following sections.

DecisionController. TheDecision Controller determines if the receiver
can access the PI and what actions are allowed. It dynamically validates the
receiver’s context using Equation 6, while the ’PI Operations Filter’ enforces
restrictions and the ’Error Display Unit’ handles issues. The ’Access Decision
Controller’ makes the final decision based on the PI creator. It extracts the
receiver’s context, operation, checksum, and package name (Fig.6 3). The
APK Query module checks the App Knowledge DB for prior analysis (Fig.6
4). If found, the data is sent to the Decision Controller (Fig.6 9).

APK Query Module. This module verifies if an app’s binary details,
permissions, and other attributes exist in the local database using its check-
sum (Fig. 6 5). If app details exist in knowledge DB, they are forwarded to
the introspect module for validation. If absent, it retrieves the APK via Pack-
ageManager and invokes the APK Introspect module’s ’Dynamic Binary
Code Inspector’ for binary analysis and further validation (Fig. 6 6).

Dynamic Binary Code Inspector performs the binary analysis once per
app and stored with its checksum in the App Knowledge DB, avoiding
redundancy unless the app is updated. It occurs during the initial invocation
of PendingMutent. Binary analysis of a 28 MB APK with 25,570 classes may
take up to 57 seconds, introducing some overhead, which is being optimized.

AppKnowledge. The internal database stores app details like checksum,
package name, privileges, and PI exploit codes, maintaining records of app-
specific communication.

APK Introspection Module. This module (Fig.6 6) retrieves the
app’s behavior and capabilities from its APK. The dynamic inspector con-
ducts binary analysis to identify any PI exploit code, such as modifying
the base Intent or exposing it via implicit broadcast. The findings are then
updated in the database (Fig.6 7).

PI Access Validator Module. This module ensures that only valid con-
texts access the PI and permissible operations are granted. It uses Equation
9 to evaluate unsafe code based on the binary information received from
Fig.6 8 , the PI invocation boundaries by Equation 5, and the state of the
PI by Equation 7. Domain relationships and permissions are determined
by Equation 8, and the access validation unit operates based on Equation 9
to decide the permitted operations. Finally, it decides whether requested
operations can be executed based on Equation 10 (Fig.6 9 , 10).

5 Evaluation
PendingMutent is a pluggable Java library for Android (v10) that replaces
Android’s PI library, comprising 1200 LOC. We tested it on a HONOR Pad
X9 (Snapdragon 685, 7GB RAM, 128GB storage, Android 13) and an Android
14 emulator (Pixel 8, API level 34, arm64-v8a)[50]. Our evaluation focused
on key research questions.

RQ1 How effective is PendingMutent in preventing various PI attacks?
RQ2 How does the effectiveness of PendingMutent compare to other

similar tools in the literature?
RQ3 How easy is it for an app to transition from the Android’s PI to

PendingMutent?

5.1 Effectiveness of PendingMutent- RQ1
Datasets. FollowingRQ1, we evaluated the effectiveness of PendingMutent
on a series of self-developed benign and malware Android apps acting in
the sender and receiver roles of PI. We developed 6 benign apps (3 versions
of ShoppingCart and 3 versions CovidAlarm apps), and three malware
apps (explained in §2.2). These apps are customized to use PendingMutent
instead of the native PI library. The ShoppingCart and CovidAlarm request
dangerous permissions like PHONE_CALL, LOCATION, and CAMERA.

Methodology. The ShoppingCart app uses an implicit Intent to ex-
change PendingMutent in order to dynamically collaborate with third-party
apps (say, CovidAlarm). For our tests, an experimental device was installed
with the ShoppingCart (3 apps), CovidAlarm (3 apps), and the other 3 mal-
ware apps. The malware apps are designed to sniff the PendingMutent and
exhibit some of the following malicious properties:

A Performing an unintended modification - i.e. the malware can mu-
tate the received unsafe PendingMutent to perform certain malicious
activities.

B Executing a privilege escalation attack where the receiver lacks the
required privilege to invoke PendingMutent, such as making a phone
call service without ACTION_CALL permission, following Equation 5.

SaT-CPS ’25, June 4–6, 2025, PA, USA. Pradeep Kumar Duraisamy Soundrapandian, Carlos Rubio-Medrano, Jaejong Baek, and Geetha S

Figure 6: The Architecture of PendingMutent. The PendingMutent verifies if the current receiver context (𝑋𝑐𝑡𝑥) has permission
to access the encapsulated PI (2○), and dynamically decides whether it can execute the specified operation 𝑜𝑝 (10○).

C Performing a workflow attack - i.e. the receiver may invoke the Pend-
ingMutent disrupting the pre-defined workflow property (Section 2.3).

PendingMutent detects malware based on app behavior rather than ac-
quired privileges. During testing, a simulated user entered a geo-fenced
location, triggering ShoppingCart’s Location component to delegate Pend-
ingMutent to CovidAlarm via an implicit/broadcast Intent. Malware on
the device intercepted PendingMutent by registering on the same implic-
it/broadcast communication channel.

Results. However, the malware receiver could not access the Pending-
Mutent, when it performs the malicious property A and B , however,

PendingMutent cannot block the malicious property C from happening.
This approach safeguards PI against potential privileged escalation attacks.
Moreover, through the utilization of Ownership-Domain, it effectively re-
stricts the recipient’s ability to invoke privileged methods on the PI.

5.2 RAICC(IccTA) vs StickyMutent vs Android
PI vs PendingMutent- RQ2

Datasets. To address RQ2, we leveraged the StickyMutent dataset [40], a
well-known collection of 22 apps displaying PI-based attacks, to assess the
efficiency of PendingMutent as follows.

Methodology. The StickyMutent dataset consists of 22 intra-
communicating apps with 51 components and 51 inter-communicating
apps. In total, we have 73 applications all using PI’s for ICC. In addition,
we added 3 intra-communicating apps and 9 inter-communicating apps
demonstrating the scenarios as mentioned in A , B , C (described in
Section 5.1).

Results. Table 3 compares PendingMutent with RAICC-instrumented
IccTA and StickyMutent. PendingMutent mitigates 57 out of 60 inter-
communication vulnerabilities but has limitations with workflow attacks,
causing false negatives when a benign receiver inadvertently invokes the
received PendingMutent (WorkflowAttack3). Despite this, PendingMutent
outperforms StickyMutent and RAICC in defending against PI-based attacks.
Evaluated with Precision, Recall, and F1 scores, PendingMutent achieved
100% precision and 78.3% recall in intra-app analysis, and 100% precision
with 95.7% recall in inter-app analysis, with F1 scores of 0.88 and 0.98, respec-
tively, supporting RQ2. Of 85 tested apps, 5 had false negatives in intra-app

PendingMutent
(StaticAnalysis) (Read-FromDB)

StickyMutent PendingIntent
0

5

10

15

in seconds← →in milliseconds

Ti
m
e
in

Se
co
nd

s

0

5

10

15

Ti
m
e
in

M
ill
is
ec
on

ds

0

5

10

15

Ti
m
e
in

M
ill
is
ec
on

ds

Figure 7: Creation Time from Benchmark Dataset: Pending-
Mutent vs StickyMutent vs PI.

communication, and 3 in inter-app communication, where PendingMutent
couldn’t handle workflow attacks.

5.3 Efficiency in Adapting PendingMutent- RQ3
Datasets. To answer the RQ3 question on the real-time adaptability of
our approach, we chose five apps that are using PI: four from Github -
PushNotification[6], SimpleNotification_1[14], SimpleNotification_2[48],
SimpleNotification_3[57] and our self-developed Shopping Cart app (ex-
plained in §2.2).

Methodology. These five Android/Java projects were modified to use
PendingMutent instead of Android’s PI library. These apps were tested with
Culebra [58], a playback tool that recorded simulated user interactions for 5
minutes, which were then replayed for 100 runs. The average time overhead
to create an PendingMutent object, based on these tests, is shown in Fig.8

Results. The performance overhead of PendingMutent is minimal com-
pared to PI creation, as shown in Fig.7. Users reported slight latency during
the initial invocation due to binary analysis, but no noticeable delays after-
ward. On average, creating a PendingMutent object took 1–2 ms with data-
base info and 1–6 s during static analysis, while a PI object took 0.01–1.99 ms

PendingMutent: An Authorization Framework for Preventing PendingIntent Attacks in Android-based Mobile Cyber-Physical Systems SaT-CPS ’25, June 4–6, 2025, PA, USA.

RAICC(IccTA) StickyMutent PendingMutent
Intra Inter Intra Inter Intra Inter

⊕ ⊖ | ⊗ ⊕ ⊖ | ⊗ ⊕ ⊖ | ⊗ ⊕ ⊖ | ⊗ ⊕ ⊖ | ⊗ ⊕ ⊖ | ⊗
Total Vulnerabilities 16 7 13 10 18 5 20 3 18 5 22 1
Precision p = ⊕/(⊕+⊗) 88.9% 86.7% 100% 100% 100% 100%
Recall r = ⊕/(⊕+⊖) 76.2% 61.9% 78.3% 87.0% 78.3% 95.7%
F1-Score = (2pr)/(p+r) 0.82 0.72 0.88 0.93 0.88 0.98
Accuracy = ((⊕+⊙)/(⊕+⊙+⊗+⊖)) 70% 57% 78% 87% 78% 96%
⊕ - True Positive (TP) ⊙ - True Negative (TN) ⊖ - False Negative (FN) ⊗ - False Positive (FP)

Table 3: RAICC (IccTA) vs StickyMutent vs PendingMutent.

(Fig.7). Despite the static analysis overhead, PendingMutent ’s performance
impact is minimal (0.0015%).

5.4 Discussion
PendingMutent, a Java library, requires minimal code refactoring and in-
tegrates easily by replacing the PendingIntent API (Section 5.3). PI Fixer
automates converting APKs to PendingMutent, processing a 46MB APK
in 5.7 minutes (Section 5.4). It enhances Android’s security by adding a
dynamic validation step before a receiver accesses a PendingIntent, using
binary analysis to detect vulnerabilities and assess capabilities, unlike An-
droid’s static permission checks. PendingMutent ensures only authorized
actions are allowed. While the current Java implementation introduces la-
tency, integrating it into AOSP or using cloud-based models like Dypoldroid
[27] could reduce overhead. This study does not cover Java reflection or
dynamic code loading, focusing on the receiver’s actions on PendingIntent
(Section 4.1, Eq. 2, 3).

6 Related Work
We categorize the related literature into three areas: (1) PI security, (2) static
dex analysis for filtering malicious components, and (3) incremental analysis
using knowledge graphs and dynamic policies.

PI Security. Security vulnerabilities related to PI have been studied by
RAICC [33] and PIAnalyzer [44]. PIAnalyzer uses static analysis to detect PI
vulnerabilities. RAICC adds a method startActivity() to PI calls, converting
them to standard ICC calls, improving the precision of tools like IccTA [36]
and Amandroid [31]. PendingIntent-Tracker [28] reports vulnerabilities in
OEM apps. Unlike these approaches, PendingMutent combines static and
dynamic analysis to prevent malware from accessing PI. Vulnerabilities
first reported in 2014 [15], with recent ones [17, 18, 20], enable attacks like
Privilege Escalation (PE)[43] and Unauthorized Invoke (UI)[29], exploiting
weak PI exchanges via implicit Intents [28, 33, 44].

ICC Static Analysis. Static analysis and dynamic monitoring effectively
detect ICC attacks [30, 42, 46]. Barros et al.[39] track taint flow with security
annotations. Permission re-delegation attacks bypass Android’s permission
system[9]. SALMA [38] uses a Multiple-Domain-Matrix graph to detect
ICC issues, while Amandroid [31] tracks control and data flow. CHEX [37]
treats component vulnerabilities as data-flow problems, and AnFlo [8] clas-
sifies apps as malware or benign. TERMINATOR [1] grants and revokes
permissions based on system safety. Integrating tools like SALMA [38]
and Amandroid [31] into PendingMutent ’s introspection module (§4.2)
improves app interaction predictions by creating event-flow graphs.

Policies & Intent-based Filters. Certifying software via source code
inspection is an effective malware mitigation strategy. Aquifer [35] defines
UI workflow policies for app interaction, while Mutent [41] protects ICC
communication using policies and encryption.Maxoid [68] enables receivers
to access sender data exchanged via Intents, while preventing leaks. In
contrast, PI necessitates a dynamic authority framework that combines static
analysis and dynamic decision-making, which PendingMutent incorporates
into its design, to classify receivers before granting access.

And
roid

Alar
m Push

Not
ifica

tion And
roid

Not
ifica

tion Key
note

s
Sho

ppin
g

Cart

100

102

1047.73 8.28
7.12 7.37

8.34

0.63 0.54 4.88 · 10−2 0.46 0.390.56 0.5

−0.65

0.1 4.88 · 10−2

2.48 2.53 2.46 2.4 2.68

Cr
ea
tio

n
Ti
m
e
(in

M
ill
is
ec
on

ds
)

PendingMutent Static Analysis Time (ms)
PendingMutent Time From DB (ms)
PendingIntent Time (ms)
StickyMutent Time (ms)

(a) Creation Time Overhead

And
roid

Alar
m Push

Not
ifica

tion And
roid

Not
ifica

tion Key
note

s
Sho

ppin
g

Cart
10−4

10−2

100
−0.28

0.28

−0.89 −0.64

0.33

−6.53 −6.51 −6.5 −6.45 −6.45
−7.44 −7.5

−8.67
−7.9 −7.55

−5.52 −5.48 −5.55 −5.61 −5.33

Cr
ea
tio

n
Ti
m
e
(in

M
ill
is
ec
on

ds
)

(b) Performance Overhead Percentage
Figure 8: Assessing the Time Overhead between PendingMu-
tent, StickyMutent, and PI, Conducted through a Study on
APKs Sized between 40-45 MB.

Methods Benign Receiver
with Capability

Superset

Benign Receiver
without Capability

Superset

Malware Receiver
with Capability

Superset

Malware Receiver
without Capability

Superset

Android PI TN TN FN FN
StickyMutent TN FP FN TP
PendingMutent TN TN TP TP

TN - a benign receiver granted to access the encapsulated PI (All Good); TP - a malware
receiver blocked from accessing the encapsulated PI (PI is protected); FN - a malware
receiver granted to access the encapsulated PI (Lost data + identity); FP - a benign
receiver blocked from accessing the encapsulated PI (Lost workflow triggers)

Table 4: Protecting PI from malware receiver: comparison of
Android PI Library vs StickyMutent vs PendingMutent

7 Conclusion
This paper introduces PendingMutent, an authorization framework for
securing PendingIntent in Android apps within mobile-powered Cyber-
Physical Systems (CPS). By integrating capability-based authorization, bi-
nary analysis, and an ownership domain model, PendingMutent restricts
privileged actions while enabling secure app interactions. Implemented as
a pluggable Java library, it provides runtime protection against Privilege
Escalation and Unauthorized PendingIntent Invocation attacks, ensuring

SaT-CPS ’25, June 4–6, 2025, PA, USA. Pradeep Kumar Duraisamy Soundrapandian, Carlos Rubio-Medrano, Jaejong Baek, and Geetha S

the integrity of mobile-driven CPS in domains like smart grids, autonomous
vehicles, and industrial automation by enabling secure delegation and com-
ponent interaction to prevent malicious disruptions.

Acknowledgments
This work was partially supported by the US National Science Foundation
(NSF) under Grants No. 2131263 and No. 2232911, and by the US Department
of Transportation (USDOT) Tier-1 University Transportation Center (UTC)
Transportation Cybersecurity Center for Advanced Research and Education
(CYBER-CARE). (Grant No. 69A3552348332).

References
[1] Alireza Sadeghi et.al. 2018. A temporal permission analysis and enforcement

framework for android. In 40th ICSE, (2018).
[2] Android 14 Beta. 2024. . https://developer.android.com/reference/android/app/

PendingIntent#FLAG_ALLOW_UNSAFE_IMPLICIT_INTENT
[3] Android: Define a custom app permission. 2024. . https://developer.android.co

m/guide/topics/permissions/defining Accessed: 01-Nov-24.
[4] Android Developers Docs Guides, <manifest>. 2024. . https://developer.android.

com/guide/topics/manifest/manifest-element#uid Accessed: 01-Nov-24.
[5] AndroZoo. 2024. . https://androzoo.uni.lu/ Accessed: 01-Nov-24.
[6] Lê Văn Anh. [n. d.]. Alarm. https://github.com/leanh153/Android-Alarm

Accessed: 16-Sep-24.
[7] Replay attack. 2024. . https://en.wikipedia.org/wiki/Replay_attack Accessed:

01-Nov-24.
[8] Biniam Fisseha Demissie et.al. 2018. Anflo: detecting anomalous sensitive infor-

mation flows in android apps. InMOBILESoft. (2018).
[9] Biniam Fisseha Demissie et.al. 2020. Security analysis of permission re-delegation

vulnerabilities in android apps. In Empirical Software Engineering. (2020).
[10] PendingIntent Cancel. [n. d.]. . https://developer.android.com/reference/androi

d/app/PendingIntent#cancel() Accessed: 25-Mar-24.
[11] Laura Ceci. 2024. Number of available applications in the Google Play Store from

March 2017 to June 2024. https://www.statista.com/statistics/266210/number-of-
available-applications-in-the-google-play-store/ Accessed: 01-Nov-24.

[12] Clarke D.G et.al. 2001. Simple ownership types for object containment. In
ECOOP’01. (2001).

[13] APK Combo. 2024. . https://apkcombo.com/,
[14] Android custom push notification layouts. 2024. . https://github.com/WebEnga

ge/android-custom-push-layouts Accessed: 01-Nov-24.
[15] CVE-2014-8609. 2024. Android Settings application privilege leakage. https:

//nvd.nist.gov/vuln/detail/CVE-2014-8609/ Accessed: 01-Nov-24.
[16] CVE-2020-4100. 2024. Android dynamic code loading. https://nvd.nist.gov/vuln/

detail/CVE-2020-4100/ Accessed: 01-Nov-24.
[17] CVE-2021-25352. [n. d.]. Using PendingIntent with implicit intent. https://nvd.ni

st.gov/vuln/detail/CVE-2021-25352 Accessed: 16-Sep-24.
[18] CVE-2021-25364. [n. d.]. A pendingIntent hijacking vulnerability. https://nvd.nist

.gov/vuln/detail/CVE-2021-25364 Accessed: 16-Sep-24.
[19] CVE-2022-22285. [n. d.]. Execute privileged action. https://www.cvedetails.com/c

ve/CVE-2022-22285/ Accessed: 16-Sep-24.
[20] CVE-2022-22286. [n. d.]. Execute privileged action. https://nvd.nist.gov/vuln/de

tail/CVE-2022-22286 Accessed: 16-Sep-24.
[21] CVE-2023-20950. 2024. Bypass background activity via a pendingIntent. https:

//nvd.nist.gov/vuln/detail/CVE-2023-20950 Accessed: 01-Nov-24.
[22] CVE-2023-20962. 2024. Start foreground activity via unsafe PendingIntent. https:

//nvd.nist.gov/vuln/detail/CVE-2023-20962 Accessed: 01-Nov-24.
[23] CVE-2023-35676. 2024. Trigger a background activity launch due to an unsafe

PendingIntent. https://nvd.nist.gov/vuln/detail/CVE-2023-35676
[24] CVE-2023-42471. 2024. Remote attacker executing arbitrary JavaScript code via

a crafted intent. https://nvd.nist.gov/vuln/detail/CVE-2023-42471/ Accessed:
01-Nov-24.

[25] Andro-AutoPsy Dataset. 2024. Andro-AutoPsy Dataset. https://ocslab.hksecurity.
net/andro-autopsy Accessed: 01-Nov-24.

[26] Ariel Rosenfeld et.al. 2018. Automation of Android applications functional testing
using machine learning activities classification. In MOBILESoft’18. (2018).

[27] Carlos E. Rubio-Medrano et.al. 2023. DyPolDroid: Protecting Against Permission-
Abuse Attacks in Android. Information Systems Frontiers, (2023).

[28] Chennan Zhang et.al. 2022. PITracker: Detecting Android PendingIntent Vulner-
abilities through Intent Flow Analysis. In Proc. of WiSec’22. (2022).

[29] Erika Chin et.al. 2011. Analyzing inter-application communication in android.
In 9th MobiSys. (2011).

[30] Felt A P et.al. 2011. Permission re-delegation: Attacks and defenses. In USENIX
Symposium (2011).

[31] FengguoWei et.al. 2014. Amandroid: A precise and general inter-component data
flow analysis framework for security vetting of android apps. In ACM CCS’14.

(2014).
[32] Glenford J.Myers et.al. 2015. The Art of Software Testing, 3rd Edition. Wiley

Publishing. ISBN: 978-1-119-20248-6. (2015).
[33] Jordan Samhi et.al. 2021. Raicc: Revealing atypical inter-component communica-

tion in android apps. In 43rd ICSE, IEEE/ACM, (2021).
[34] Kevin Allix et.al. 2016. AndroZoo: Collecting Millions of Android Apps for the

Research Community. In ACM 13th MSR’16. (2016).
[35] Limin Jia et.al. 2013. Run-time enforcement of information-flow properties on

android. In ESORICS. (2013).
[36] Li Li et.al. 2015. Iccta: Detecting inter-component privacy leaks in android apps.

In ICSE’2015, volume 1. (2015).
[37] Long Lu et.al. 2018. Chex: statically vetting android apps for component hijacking

vulnerabilities. In ACM CCS. (2018).
[38] M Hammad et.al. 2018. Self-protection of android systems from inter-component

communication attacks. In ACM/IEEE ASE’18. (2018).
[39] Paulo Barros et.al. 2015. Static analysis of implicit control flow: Resolving java

reflection and android intents. In 30th ASE’15. (2015).
[40] Pradeepkumar D.S et.al. 2022. On Shielding Android’s Pending Intent from

Malware Apps Using a Novel Ownership-Based Authentication. In JCSC (2022).
[41] Pradeepkumar D S et.al. 2021. Mutent: Dynamic android intent protection with

ownership-based key distribution and security contracts. In l HICSS’54. (2021).
[42] Steven Arzt et.al. 2014. Flowdroid: precise context, flow, field, object-sensitive

and lifecycle-aware taint analysis for android apps. In PLDI’14, (2014).
[43] Sven Bugiel et.al. 2012. Towards Taming Privilege-Escalation Attacks on Android.

In NDSS’12. (2012).
[44] Sascha Groß et.al. 2018. Pianalyzer: A precise approach for pendingintent vul-

nerability analysis. In In ESORICS.. (2018).
[45] Xiaolu Zhang et.al. 2021. Android application forensics: A survey of obfusca-

tion, obfuscation detection and deobfuscation techniques and their impact on
investigations. Forensic Science International: Digital Investigation (2021).

[46] Youn Kyu Lee et.al. 2017. A sealant for inter-app security holes in android. In
39th ICSE, (2017).

[47] Exposure Notifications. 2024. . https://www.google.com/intl/en_us/covid19/ex
posurenotifications/ Accessed: 01-Nov-24.

[48] Jaison Fernando. [n. d.]. Notification. https://github.com/jaisonfdo/Notificatio
nExample Accessed: 02-Nov-24.

[49] Genādijs Moskvins. 2022. On Intelligent Sensors and Internet of Things Based
Cyber-Physical System for Consumer Protection. In International Journal of
Agricultural Science (2022).

[50] Google Play ARM 64 v8a System Image. 2024. . https://developer.android.com/
about/versions/14/get Accessed: 24-Mar-24.

[51] et.al. Guo, Yanxiang. 2018. Mobile Cyber Physical Systems: Current Challenges
and Future Networking Applications. IEEE Access (2018).

[52] Android Common intents. 2024. . https://developer.android.com/guide/compon
ents/intents-common/ Accessed: 01-Nov-24.

[53] Hongqi Wu. Jice Wang. 2018. Android Inter-App Communication Threats, Solu-
tions, and Challenges. (2018). https://arxiv.org/abs/1803.05039

[54] Neel Krishnaswami and Jonathan Aldrich. 2005. Permission-Based Ownership:
Encapsulating State in Higher-Order Typed Languages. In PLDI’05. (2005).

[55] Lingguang et.al Lei. 2013. A Threat to Mobile Cyber-Physical Systems: Sensor-
Based Privacy Theft Attacks on Android Smartphones. In IEEE TrustCom’13.

[56] Haoyu et.al Ma. 2021. Deep-Learning–Based App Sensitive Behavior Surveillance
for Android Powered Cyber–Physical Systems. IEEE Transactions on Industrial
Informatics (2021).

[57] Akash Manna. 2024. Keynotes. https://github.com/akash2099/KeepNotes-
AndroidApp Accessed: 01-Nov-24.

[58] Diego Torres Milano. 2024. Culebra: Ready-to-execute scripts for black box testing.
https://github.com/dtmilano/AndroidViewClient/wiki/culebra

[59] APK Mirror. 2024. (2024). https://www.apkmirror.com/
[60] Outbreaks Near Me. 2024. . https://outbreaksnearme.org/us/en-US Accessed:

01-Nov-24.
[61] Fernando Ruiz. [n. d.]. SpyLoan: A Global Threat Exploiting Social Engineering.

https://tinyurl.com/5n95un2f Accessed: 20-Feb-25.
[62] Application Sandbox. 2024. . https://source.android.com/docs/security/app-

sandbox Accessed: 01-Nov-24.
[63] Shrink, obfuscate, and optimize your app. 2024. . https://developer.android.com/

build/shrink-code Accessed: 01-Nov-24.
[64] Latika Singh and Markus Hofmann. 2017. Dynamic behavior analysis of android

applications for malware detection. In 2017 ICCT.
[65] Maddie Stone. 2019. Securing the system: A deep dive into reversing android

pre-installed apps.
[66] Deloitte Survey. 2024. . https://www2.deloitte.com/us/en/pages/consumer-

business/articles/retail-recession.html Accessed: 01-Nov-24.
[67] Jae wook Jang et.al. 2015. Andro-AutoPsy: Anti-malware system based on simi-

larity matching of malware and malware creator-centric information,. In Journal
of Digital Investigation. (2015).

[68] Yuanzhong Xu and Emmett Witchel. 2015. Maxoid: Transparently confining
mobile applications with custom views of state. In EuroSys’15, (2015).

https://developer.android.com/reference/android/app/PendingIntent#FLAG_ALLOW_UNSAFE_IMPLICIT_INTENT
https://developer.android.com/reference/android/app/PendingIntent#FLAG_ALLOW_UNSAFE_IMPLICIT_INTENT
https://developer.android.com/guide/topics/permissions/defining
https://developer.android.com/guide/topics/permissions/defining
https://developer.android.com/guide/topics/manifest/manifest-element#uid
https://developer.android.com/guide/topics/manifest/manifest-element#uid
https://androzoo.uni.lu/
https://github.com/leanh153/Android-Alarm
https://en.wikipedia.org/wiki/Replay_attack
https://developer.android.com/reference/android/app/PendingIntent#cancel()
https://developer.android.com/reference/android/app/PendingIntent#cancel()
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://apkcombo.com/,
https://github.com/WebEngage/android-custom-push-layouts
https://github.com/WebEngage/android-custom-push-layouts
https://nvd.nist.gov/vuln/detail/CVE-2014-8609/
https://nvd.nist.gov/vuln/detail/CVE-2014-8609/
https://nvd.nist.gov/vuln/detail/CVE-2020-4100/
https://nvd.nist.gov/vuln/detail/CVE-2020-4100/
https://nvd.nist.gov/vuln/detail/CVE-2021-25352
https://nvd.nist.gov/vuln/detail/CVE-2021-25352
https://nvd.nist.gov/vuln/detail/CVE-2021-25364
https://nvd.nist.gov/vuln/detail/CVE-2021-25364
https://www.cvedetails.com/cve/CVE-2022-22285/
https://www.cvedetails.com/cve/CVE-2022-22285/
https://nvd.nist.gov/vuln/detail/CVE-2022-22286
https://nvd.nist.gov/vuln/detail/CVE-2022-22286
https://nvd.nist.gov/vuln/detail/CVE-2023-20950
https://nvd.nist.gov/vuln/detail/CVE-2023-20950
https://nvd.nist.gov/vuln/detail/CVE-2023-20962
https://nvd.nist.gov/vuln/detail/CVE-2023-20962
https://nvd.nist.gov/vuln/detail/CVE-2023-35676
https://nvd.nist.gov/vuln/detail/CVE-2023-42471/
https://ocslab.hksecurity.net/andro-autopsy
https://ocslab.hksecurity.net/andro-autopsy
https://www.google.com/intl/en_us/covid19/exposurenotifications/
https://www.google.com/intl/en_us/covid19/exposurenotifications/
https://github.com/jaisonfdo/NotificationExample
https://github.com/jaisonfdo/NotificationExample
https://developer.android.com/about/versions/14/get
https://developer.android.com/about/versions/14/get
https://developer.android.com/guide/components/intents-common/
https://developer.android.com/guide/components/intents-common/
https://arxiv.org/abs/1803.05039
https://github.com/akash2099/KeepNotes-AndroidApp
https://github.com/akash2099/KeepNotes-AndroidApp
https://github.com/dtmilano/AndroidViewClient/wiki/culebra
https://www.apkmirror.com/
https://outbreaksnearme.org/us/en-US
https://tinyurl.com/5n95un2f
https://source.android.com/docs/security/app-sandbox
https://source.android.com/docs/security/app-sandbox
https://developer.android.com/build/shrink-code
https://developer.android.com/build/shrink-code
https://www2.deloitte.com/us/en/pages/consumer-business/articles/retail-recession.html
https://www2.deloitte.com/us/en/pages/consumer-business/articles/retail-recession.html

	Abstract
	1 Introduction
	2 Background
	2.1 PendingIntent
	2.2 Illustrative Example
	2.3 Known PI Vulnerabilities and PI Attacks

	3 An Exploratory Empirical Study
	4 Our Approach: PendingMutent
	4.1 Theoretical Model
	4.2 System Architecture

	5 Evaluation
	5.1 Effectiveness of PendingMutent- RQ1
	5.2 RAICC(IccTA) vs StickyMutent vs Android PI vs PendingMutent- RQ2
	5.3 Efficiency in Adapting PendingMutent- RQ3
	5.4 Discussion

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

