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ABSTRACT Trajectory planning in dynamic environments is crucial for safe and efficient navigation
of UAVs, particularly in scenarios involving unknown dynamic obstacles. The Trajectory Planner in
Multiagent and Dynamic Environments (MADER) algorithm has been successfully used for this purpose;
however, it assumes perfect knowledge of the future trajectories of the dynamic obstacles. In practical
scenarios, the future trajectory of the obstacles may not be known in advance. To address this limitation,
we propose POF+MADER, an enhanced version that integrates a probabilistic obstacle filter with adaptive
prediction horizons based on obstacle velocity. Our approach integrates a decentralized real-time Kalman
Filter-based trajectory estimation with MADER’s planning core, eliminating the need for perfect a priori
knowledge. We validate our approach through simulations with sensor noise (¢ = 0.2 — 0.5m) to simulate
real-world localization uncertainty, with performance benchmarked against the MADER, Robust-MADER,
and Ego-Swarm planner baselines. To further demonstrate its practical applicability, we conducted real-world
experiments on the Crazyflie UAV platform, comparing its performance to the original MADER algorithm.
Results show a 38.75% collision rate reduction in simulation and a 25% reduction in real-world experiments,
without a significant increase in average navigation time. Furthermore, even in the presence of real-time
sensor-induced noise in obstacle position measurements, our approach consistently outperforms the baseline
planners, demonstrating its robustness in trajectory planning under perception uncertainty.

INDEX TERMS Collision avoidance, multi-robot systems, unmanned aerial vehicles (UAVs), autonomous
navigation, motion planning, trajectory planning, obstacle tracking.

I. INTRODUCTION birds). Trajectory planning is especially challenging when the

Unmanned Aerial Vehicles (UAVs) have become increasingly
prevalent in various applications where autonomous naviga-
tion in complex and dynamic environments is essential, such
as surveillance, agriculture, package delivery, and disaster
response [1], [2], [3]. A crucial aspect of UAV autonomous
operation is trajectory planning, which ensures collision-free
navigation through static obstacles (e.g., buildings, towers,
tree canopies, and wires) and dynamic obstacles (e.g.,
pedestrians, ground vehicles, balloons, other drones, or even
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future motion of obstacles is unknown or uncertain.

Dynamic obstacles encountered by UAVs can be broadly
categorized as cooperative (sharing trajectory or intent infor-
mation) or non-cooperative (offering no such information),
and as interactive (adapting to the UAV’s behavior) or
non-interactive (moving independently) [4]. In practical
scenarios, UAVs often face non-cooperative, non-interactive
obstacles, such as pedestrians, vehicles, unregistered drones,
or even birds, whose future trajectories are not available a pri-
ori and may be affected by sensor noise and environmental
uncertainty.

Various approaches in the literature have been proposed
to provide UAV trajectories that handle static obstacles,
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FIGURE 1. A typical multi-UAVs multi-dynamic obstacles scenario where
the UAVs detect and estimate the future trajectories of dynamic obstacles
within the safety radius of the UAVs to plan obstacle-free trajectories and
avoid collisions.

dynamic obstacles, and interactions with other agents [5],
[6], [7]. Among these, MADER [8] and its communication-
relaxed extension, Robust-MADER (RMADER) [9], have
demonstrated strong performance in handling multiagent sys-
tems to avoid dynamic obstacles. However, both approaches
inherently assume that the future trajectories of dynamic
obstacles are perfectly known to the planner. This assumption
is rarely satisfied in real-world deployments. Therefore,
during trajectory planning, considering the uncertainties of
the dynamic obstacle’s maneuvers is important for efficiently
avoiding collisions. The collision avoidance component is
especially important when flying in dynamic environments,
to consistently detect the position of dynamic obstacles and
estimate their future trajectories, as depicted in Fig. 1.

To alleviate this limitation of MADER [8] and RMADER
[9], in this work, we propose a Probabilistic Obstacle
Filter (POF) coupled with the MADER and RMADER
algorithms, based on the Kalman Filter (KF) [10] to estimate
the future trajectories of non-cooperative, non-interactive
dynamic obstacles in real-time. We call this extension
POF+MADER. Unlike prior approaches that either require
perfect knowledge [8], [9] or rely on computationally
intensive learning-based predictors [11], POF+MADER
adaptively predicts obstacle motion based on observed
velocities and uncertainties, and enable robust, real-time
trajectory planning on resource-constrained UAV platforms.

The main contributions of this paper can be summarized as
follows:

e Real-time Dynamic Obstacle Prediction: We introduce
a decentralized lightweight probabilistic obstacle filter
to track moving obstacles and extrapolate their future
trajectories. This relaxes the restrictive assumption
of perfect future knowledge in optimization-based
trajectory planners such as MADER and RMADER.
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Our filter dynamically adjusts the prediction horizon
based on observed obstacle velocities and incorporates
uncertainty into the planning process.

e Robust Collision Avoidance in Dynamic Environ-
ments: We integrate the probabilistic obstacle fil-
ter with MADER’s trajectory optimizer to develop
POF + MADER (or POF+RMADER if integrated with
RMADER), which formulates the predicted obstacle
states and their associated uncertainties as dynamic,
time-varying constraints within the MADER optimiza-
tion problem. POF-integrated methods transform the
planners from being purely reactive to proactively gen-
erating collision-free trajectories that account for most
probable future trajectories of the dynamic obstacles.
To comprehensively evaluate their robustness, these
planners are tested against a representative suite of
four motion models: straight-line for predictable paths,
sinusoidal for oscillatory maneuvers, vertical wave for
altitude variations, and trefoil-knot for complex, looped
evasions. These canonical motion models serve as
parametric approximations of challenging real-world
behaviors, such as the flight patterns of birds or other
non-cooperative drones. Across these scenarios, POF-
integrated methods demonstrated significantly lower
collision rates compared to the baselines.

o Experimental Validation and Benchmarking: We pro-
vide a comprehensive benchmark of our hybrid archi-
tecture in simulation, against the MADER, RMADER,
and the state-of-the-art EGO-Swarm [5] baselines. Our
analysis also considers sensor noise (0 = 0.2 —0.5m) to
quantify the system’s resilience to real-world perception
uncertainty. Furthermore, we demonstrate the practical
viability of our lightweight approach through success-
ful hardware implementation on resource-constrained
Crazyflie 2.1 UAVs, which shows its applicability
beyond simulation.

The remainder of the paper is organized as follows:
Section II provides a literature review on multiagent tra-
jectory planning considering obstacle avoidance. Section III
provides problem formulation, including the assumptions
and constraints associated with dynamic obstacles trajectory
prediction. Section IV describes our proposed method,
focusing on the integration of our probabilistic filter with
optimization-based planners to create a proactive trajectory
planner. Section V presents the evaluation and results of
our experiments, including a comparison with the baselines.
Section VI discusses the performance, robustness, and
limitations of the proposed method. Lastly, Section VII
discusses the conclusion and future work.

Il. LITERATURE REVIEW

Trajectory planning in dynamic environments remains a
critical challenge for unmanned aerial vehicles (UAVs) [12],
particularly when navigating alongside non-cooperative
dynamic obstacles with uncertain motion [13]. One way
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to avoid mid-air collisions with dynamic obstacles is to
predict their short-term future trajectories [4]. Recent studies
have presented several prediction techniques, including
model-based [14], [15], [16], learning-based [17], [18],
biomimetic [19], [20], and polynomial fitting [21], [22]
methods. Model-based methods such as Kalman Filters
(KF) estimate future states from past observations and
provide fast, low-latency predictions [14], [23]. Learning-
based methods, such as reinforcement learning, employ
neural networks to capture complex and non-linear obstacle
motions, but they require substantial training data and
computational resources [21], [24]. Biomimetic methods
replicate biological vision, offering quick responses using
minimal visual information but usually require significant
parameter tuning and lack predictive depth [25]. Polynomial
fitting method utilizes polynomial calculations for prediction
but is constrained to paths featuring regular and smooth
curves [12]. Most of these approaches relied heavily
on deterministic assumptions about obstacle trajectories,
such as constant-velocity [26], linear acceleration, or an
a priori knowledge of obstacles’ future trajectories [8],
[9], which limit their real-world applicability. For instance,
the MADER [8] algorithm provides collision-free multi-
agent planning using polyhedral obstacle representations,
but assumes perfect a priori knowledge of the dynamic
obstacle future trajectory. Non-cooperative obstacles, such as
human-operated vehicles, pedestrians, or even birds, do not
provide trajectory information to UAVs. Even cooperative
obstacles may experience communication delays or failures
that make their intended trajectories temporarily unavailable.
Following this, RMADER [9], which is an extension of the
original MADER algorithm, incorporates delay compensa-
tion mechanisms to achieve improved collision avoidance
performance even when communication with other UAV's and
agents is intermittent. The algorithm maintains computational
efficiency while providing theoretical guarantees for colli-
sion avoidance under realistic communication constraints.
However, it still assumes eventual access to obstacle future
trajectories information.

Collision avoidance in multiagent systems often differs
whether the method can avoid collision with static obsta-
cles [27], [28], dynamic obstacles [18], [29], or among the
agents only [30], [31]. Charbel et al. [32] have proposed
a decentralized Model Predictive Control-based trajectory
planner that has better performance than MADER in terms of
static obstacle avoidance and computation time, however, this
approach does not explicitly incorporate dynamic obstacles
as part of the collision avoidance scheme. Ego-Swarm [5] is
another approach, an online decentralized and asynchronous
trajectory planner implemented on both simulation and
hardware, and includes capabilities for dynamic obstacle
avoidance. In this paper, we have considered it as a baseline
for comparison. The Chance Constrained Rapidly-exploring
Random Trees (CC-RRT) algorithm [33] is another method
that avoids dynamic obstacles by conservatively constraining
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the likelihood of collisions, accounting for Gaussian noise
inherent in both linear system dynamics and the translational
predictions of dynamic obstacles, and then plans obstacle-
free trajectories.

Trajectory planner for dynamic environments usually relies
on sensing and detection technologies [34] that could provide
real-time information about dynamic obstacles. Modern
UAVs employ a variety of sensing modalities, each with
distinct advantages and limitations for dynamic obstacle
detection and tracking. Approaches can be broadly divided
into vision-based detection [35] and map-based tracking [14].
Vision-based methods use cameras (RGB [35] or depth [36])
or other optical sensors to directly detect obstacles in the
UAV’s field of view. Some lightweight techniques [14], [36]
extract geometric cues (e.g., disparity from stereo or depth
cameras) to locate obstacles and track them in real-time. For
example, Liu et al. [37] has shown that lightweight object
detection algorithms, can operate on UAV platforms to iden-
tify and track dynamic obstacles in real-time. Their approach
combines visual object detection with Kalman filtering to
estimate obstacle states and predict short-term trajectories.
The limitation of purely vision methods is that they often
cannot distinguish moving obstacles from static ones without
temporal consistency checks [38]. Learning-based vision
approaches (for example, neural network detectors) [39] are
also used to classify and track obstacles, but these tend to be
computationally heavy for small-scale UAV onboard use. The
second category is map-based approaches [40], [41], [42],
which integrate sensor data over time into a world model.
For example, a voxel grid map where each cell is marked
as occupied (obstacle) or free; by updating this map at high
frequency, one can infer which cells have changed and thus
detect moving objects [43]. Such methods separate static and
dynamic elements, but a drawback is that a voxel map alone
does not provide an easy way to predict future motion of
dynamic obstacles [14].

Even with good tracking, the future trajectories of
dynamic obstacles remain uncertain [4]. The planner must
therefore account for uncertainty to ensure robust collision
avoidance. Amutha et al. [44] have presented a probabilistic
framework that explicitly models uncertainty in obsta-
cle motion and UAV dynamics to generate trajectories
with probabilistic safety guarantees. Chance-constrained
planning formalizes this idea by treating obstacle states
as random variables and enforcing that the probability
of collision remains below a specified threshold [45],
[46]. Another approach is to use online learning [47] or
adaptive modeling [48] to tighten the uncertainty bounds.
Instead of assuming worst-case behavior (which can be
overly conservative), the planner can learn typical obstacle
behavior on the fly. For example, Zhou et al. [47] estimate
intended control inputs of dynamic obstacles and compute
less-conservative forward reachable sets, enabling a robust
MPC to keep the ego trajectory outside those sets over the
horizon.
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The proposed POF+MADER approach addresses the lim-
itations of the existing methods by providing a lightweight,
theoretically grounded solution that combines the compu-
tational efficiency of Kalman filter-based prediction with
the proven collision avoidance capabilities of established
optimization methods (e.g., MADER, RMADER). Unlike
existing approaches that require perfect a priori knowledge
or extensive computational resources, our method enables
practical deployment on standard UAV platforms while main-
taining formal safety under realistic operational conditions
with uncertain dynamic obstacles and limited computational
resources.

lll. PROBLEM FORMULATION

LetZ = {1, ..., N} denote the set of N agents, with p;(¢) €
R? representing the position of agent i € Z at time ¢. Each
agent is modeled as a rigid sphere S; C R? of radius r; >
0, enclosing all possible orientations such that the collision
geometry remains invariant to rotation. The perception range
of agent i is defined as a sphere S); C R3 of radius rpi > 0,
centered at p;(¢), within which the agent can detect obstacles
using onboard sensors.

A. DYNAMIC OBSTACLES AND PARTIAL OBSERVABILITY
Let M = {1, ..., M} denote the set of M dynamic obstacles,
with state vector X, (1) = [qm®) ", qn(®) 1T € RO for
obstacle m € M, where q,,(t) € R3 is the true position and
Qm(7) € R3 is the velocity at time ¢. Obstacle positions are not
globally known; instead, when an obstacle is within agent i’s
perception range, the agent receives a noisy measurement of
its position z,,(?), i.e., when

Ipi(®) — @I < rpi VieI, Vme M, Vt € [tin, t],

where [ti, tf] is the planning horizon, and

Zi(1) = qu(t) + Viu(2),

where v,,,(t) ~ N (0, R) is zero-mean Gaussian sensor noise
with covariance R.

B. PROBABILISTIC FORECASTING AND TRAJECTORY
PLANNING

Given this partial and uncertain information, the overall
problem is to: (1) predict the obstacle’s future trajectory and
(2) plan a safe and efficient path for the agent.

1) FORECASTING OBJECTIVE

Upon detection, each agent i employs a probabilistic filter to
estimate the obstacle’s current state X,,(¢|¢) and predict the
future trajectory 7, (t]t) = Qm(t + k|t)é: | over a horizon
L. Let m,(t) represent the actual unobserved trajectory of
obstacle m over [tin, #f]. The primary objective of the filter
is to minimize the aggregate prediction error across all
obstacles:

M tf s
min 3 [l = a0 Pdr (0
{”m}%:l m=1" lin
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2) PLANNING OBJECTIVE

The primary objective for each agent i is to compute a
smooth, dynamically feasible trajectory 7;(¢) that reaches a
goal while ensuring safety. This is typically formulated as
a constrained optimization problem that minimizes control
effort (e.g., integrated squared jerk):

It

. . 2

mln/ 13O~ dt
Ti fin

This optimization is subject to kinematic constraints (e.g.,

maximum velocity and acceleration) and the following

collision avoidance constraints based on 7,,,(¢).

C. SAFETY CONSTRAINTS

To ensure safe navigation, the agent’s planned trajectory t;(¢)
must remain separate from the predicted paths of other agents
and obstacles.

1) INTER-AGENT COLLISION AVOIDANCE
For any two distinct agents, their planned trajectories must be
disjoint by a safety margin dagent:

U U (Ti(t) 52 dagent) N (Tj(t) @ dagent) = Vt € [tn, t]
i€l jeZ
J#i
(2)
where dygent > 0 is the minimum inter-agent separation
(typically 2r; + €).

2) AGENT-OBSTACLE COLLISION AVOIDANCE

The agent must avoid the predicted occupancy of each
dynamic obstacle. In other words, the agent’s trajectory 7;(¢)
must not intersect with the predicted obstacle trajectory
Aim(t), inflated by a safety margin dp:

U U @@ @ dute) NAn) =0 Vi€ ltin, 511 (3)
i€ meM

where dgfe > 0 is the minimum safe separation (sum of
agent radius r;, obstacle radius r,,, and margin € > 0 for
uncertainty), and @dg,fe denotes the Minkowski sum inflating
the trajectory by a sphere of radius dgafe.

IV. METHODOLOGY AND INTEGRATION

A. DYNAMIC OBSTACLE DEFINITION AND MODEL

In our framework, dynamic obstacles are defined as
non-cooperative and non-interactive moving entities that
may intersect with the agent’s trajectory, and may pose
collision risks. These obstacles do not share intent or
trajectory information with the agents and do not alter their
motion in response to the agents’ behaviors. To evaluate the
robustness of our approach across diverse real-world like
scenarios, we model the obstacles’ motions using four distinct
parametric trajectories, each representing varying levels of
predictability and complexity. These models are implemented
in both simulation and hardware experiments, with obstacle
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velocities scaled to challenge the prediction and avoidance
capabilities.

The position of obstacle m at time ¢, denoted by q,,(¢) €
R3, is governed by one of the following equations, selected
per experiment:

o Straight line: This model represents linear, highly pre-

dictable trajectories common in open-field navigation or
uniform motion. The position evolves as:

Qu() = qu(t = 1) 4+ qu(t — 1) - At @

where ¢,(t — 1) € R3 is the velocity at the previous
timestep, and At > 0 is the discrete time step.

o Sinusoid wave: This model captures oscillatory dynam-
ics, mimicking evasive maneuvers or environmental
perturbations (e.g., wind effects). The position at time
t is defined by:

Bt
qn(t) = C 5)
Asin(wt + ¢)

where A > 0 is the amplitude, @ > 0 is the angular
frequency, ¢ is the phase shift, B is a constant velocity
component along the x-axis, and C is a constant offset
along the y-axis.

o Trefoil-knot: Inspired by parametric curves for looped,
non-linear trajectories, simulating complex, repeating
patterns. The position of the obstacle at time ¢ is given
by:

sin(t) + 2 sin(2t)
qm(t) = | cos(t) — 2 cos(2t) 6)
—sin(3¢)

o Vertical wave: This models vertical oscillations, relevant
for altitude-varying obstacles like ascending/descending
UAVs. The position of the obstacle at time ¢ is given by:

X0
qn(t) = Yo @)
Asin(wt + ¢)

where xo and yo are constant positions in the x and
y directions, respectively, and A, w, and ¢ are the
amplitude, angular frequency, and phase shift of the
sinusoidal motion in the z-direction.

B. PROBABILISTIC OBSTACLE FILTERING

We employ a decentralized Kalman Filter (KF) for real-time
trajectory prediction of dynamic obstacles. Each agent
runs an independent KF for every obstacle that enters
its perception sphere S,; of radius r,;. This agent-centric
approach scales with the number of agents and obstacles,
as each agent independently manage predictions for obstacles
in its local vicinity.

Algorithm 1 describes the implementation of the proba-
bilistic obstacle filter, which takes the agent position p;(?),
obstacle position measurement q,,(¢), the perception radius
of the agent rp;, and a minimum prediction length L,;,. Once
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Algorithm 1 Probabilistic Obstacle Filter

Data: Y, pi(r), UY_, qu(t), perception range r,;,
minimum prediction length Ly
Result: Predicted trajectories 7,,(¢) with covariances
for all detected obstacles m
begin
foreach agenti € {1,...,N} do
Di(t) < ¥,
foreach obstacle m € {1,...,M} do
if [|pi(1) — qum(0)|| < rp; then
Di(t) < Di(1) U {m};
Compute q,(¢) from q,,(2);
Initialize KF with:
(i ltin) = [qn() T, 4T,
P, (tinltin) = Po;
end

end

while |D;(¢)| > 0 do

foreach obstacle m € Di(t) do
Perform KF prediction step:

Xp(tlt — 1) = AX,,(r — 1|t — 1),

P,(t|t — 1) = AP,,(t — 1|t — DAT +Q;
Update with measurement

Zy(t) = qu(?) :

Ym(t) = 2 (1) — HX; (2]t — 1),

S(t) = HP,,(t|t — DH' +R,

K, (t) = Po(t]t — DH'S,,(1) ",
Xin(t[t) = Xpu(t]t — 1) + K (£)ym(1),
Pu(t|t) = (Is — Ky (OH)Py,(t]t — 1);
Compute adaptive horizon:

”qm(”t)” . Tplan—‘)

L < max (Lmins ’7 7
step

for k =1to L do
Perform open-loop prediction:
Xn(t +k|t) = AR, (t + k — 1]1),
Pyu(t + k|t) = APy (1+k—1IDAT +Q,

Am(t) < Fp(t) U{Qu(t + k|1)};

end

end

foreach obstacle m € D;(t) do

if [Ipi(t) — qu(1)]| > rp; then
Dj(t) <= Di(t) \ {m};
Terminate KF for obstacle m;

end

end
Increment ¢ to next timestep;

end

end
end
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an obstacle m is detected within this predefined perception
radius rp; (i.€., ||pi(t) — qu(H)|| < rp:), the tracking system
initializes a dedicated KF specifically tailored to the detected
obstacle’s trajectory prediction (i.e., Tp(t) = {qm( +
1e), ..., @m(t + LIDD.

For each detected obstacle m at time ¢, POF maintains a
state vector X,,(1) = [qn(®) ", @u() 1" € R®, comprising the
3D position q,,(t) € R? and velocity §,(f) € R>. We adopt
a constant-velocity motion model, which is well-suited for
short-term predictions in the absence of intent information
from non-cooperative obstacles, and is commonly used in
tracking applications. The discrete-time dynamics are given
by:

Xp(t + 1) = AX,,(2) + Wi (1) ®)

where w,,(t) ~ N(0,Q) is zero-mean Gaussian process
noise with covariance matrix Q € R®*® that captures the
unmodeled accelerations or environmental disturbances. The
state transition matrix A is:

Iz At -1z
A= ‘
|:03><3 I ]

where At represents the sampling interval, I3 the 3 x 3 identity
matrix, and 033 the zero matrix. In this formulation, we omit
the control input term (Bu,,(¢)), as non-cooperative obstacles
provide no such information; however, this can be extended
for scenarios with partial observability of intent.

Sensor measurements yield noisy position observations
Zin(1) = Q1)+, (1), where v,,(1) ~ N'(0, R) and R € R3*3
is the measurement covariance which is tuned based on sensor
specifications. The linear observation model is:

H = [I3, 053] 9

The KF recursively computes the minimum mean-squared-
error estimate of X,,(¢) and alternates between time prediction
and measurement update steps. Starting from an initial
state estimate X,,(0]0) (e.g., from the first detection) and
covariance P,,(0]0) (initialized with large diagonals to reflect
high initial uncertainty), the prediction step propagates the
prior:

2y (1) = HXp(2) + Vi (2),

Xu(tlt — 1) = AR, (t — 1]t — 1), (10)
P,(t]t — 1) = AP, (r — 1|t — DAT +Q an

Upon receiving a measurement z,,(¢), the update incorporates
the innovation to yield the posterior:

Ym(t) = 2p(t) — HX, (2t — 1), (12)
Sw(t) = HP,,(t]t — DH' + R, (13)
Kn(1) = Py(t]lt — DH'S,(0) "L, (14)
Xin(t]t) = X (t|t — 1) + K (@)ym(1), (15)
P (2]1) = (Is — Kn(O)H)Py (£]2 — 1) (16)

where K,,(?) is the Kalman gain, optimally blending predic-
tion and measurement based on their relative uncertainties,
and Is is the 6 x 6 identity matrix. This formulation
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converges to accurate estimates as observations accumulate,
with the posterior covariance P, (¢|t) providing a measure of
estimation confidence.

For trajectory forecasting, POF extends the filtered state
forward over a prediction horizon L in the open-loop
mode without assuming future measurements. The multi-step
predictions are computed recursively:

Xu(t +k|t) =AX,,(t +k—1]1), k=1,....,L (17)
Initialized from the current posterior X,,(#|¢). The correspond-
ing covariances propagate as:

P,(t +k|t) =AP,(t +k—1|HDAT +Q  (18)

To optimize prediction relevance, we adaptively adjust L
based on obstacle velocity magnitude ||q,(¢)]l:

L = max (Lmin, "—Ilqm(t)ll : Tplan—‘) (19)

dstep

where Ly, is a minimum horizon, Tplan is the agent’s
planning timeframe, and dyep a spatial discretization step
used for collision checks. This ensures longer predictions for
faster obstacles and covers potential collision windows while
minimizing computational overhead.

To manage multiple dynamic obstacles, each agent i
dynamically maintains a set, D;(¢), containing all obstacles
currently within its perception sphere. An obstacle m is
considered detected and added to this set if its distance to the
agent is less than or equal to the perception radius rp;. This
condition can be expressed as a binary indicator:

L if [[pi(t) — qm()I < rpi

. (20
0, otherwise

Yim(t) = {

The set of detected obstacles for agent i at time ¢ is
therefore formally defined as:

Dit)={meM | yimt) =1} (21)

An independent Kalman Filter is instantiated for each
obstacle upon entering D;(¢) and is terminated once it leaves.
As long as an obstacle m € Dj(z), its corresponding KF is
updated with new measurements at each timestep, and its
trajectory is reforecasted according to (17); when m ¢ D;(t)
the filter is terminated and removed from memory.

The output of the probabilistic filter is the predicted
trajectory, 7,,(¢), which is a time-ordered sequence of the
obstacle’s forecasted future positions over the adaptive
horizon L. This sequence is formally defined as:

Am(®) = {Qm(t|0), @u(t + 1), ..., Gu(t + L|1)}

Each position vector q,,(r + k|t) in this sequence is
extracted from the corresponding forecasted 6D state vector
X, (t+k|t). This set of predicted positions is then passed to the
optimization-based planner to be incorporated as dynamic,
time-varying obstacle-avoidance constraints.
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FIGURE 2. The POF+MADER system architecture; integrating decentralized probabilistic obstacle filter with optimization-based planners such as

MADER [8]. The system begins by collecting the real-time current positions of both agents and obstacles, and then checks if obstacles are being detected
by agents. The POF module uses a decentralized Kalman Filter bank to estimate and forecast the trajectory (7 (t)) and uncertainty (P (t)) for each
obstacle. These predictions are formulated as dynamic constraints within the MADER optimization problem, which generates a safe, optimal trajectory

(z}") for execution by the UAV's controller, closing the real-time loop.

C. POF+MADER INTEGRATION

The integration of the Probabilistic Obstacle Filter (POF)
with state-of-the-art optimization-based trajectory planners,
such as MADER [8] or RMADER [9], forms the core of
our proposed framework, denoted as POF+MADER (or
POF+RMADER when extended to the robust variant). This
architecture addresses the inherent limitation of assuming
perfect a priori knowledge of dynamic obstacle trajectories
by substituting real-time probabilistic predictions from POF
into the planning pipeline. As illustrated in Fig. 2, the system
comprises two interconnected modules: (1) decentralized
detection and trajectory forecasting of obstacles entering an
agent’s perception sphere, executed via Algorithm 1; and
(2) augmentation of the trajectory optimization process to
incorporate these forecasts as dynamic constraints, detailed
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in Algorithm 2 and explained in this subsection. This
coupling enables agents to generate feasible, collision-free
polynomial trajectories that adapt proactively to uncertain
obstacle motions, and eventually enhance safety without
sacrificing computational tractability.

At the core of POF+MADER lies an extension of
MADER’s non-linear optimization formulation, which gen-
erates smooth, dynamically feasible trajectories represented
as piecewise polynomials in the MINVO basis [49]. For agent
i, the original MADER problem minimizes a cost function
that includes a control effort term (proportional to squared
jerk for cubic splines), weighted penalties on deviations from
the goal, and adherence to kinematic limits. Specifically,
for a clamped uniform B-Spline of degree p 3 (cubic)
with n + 1 control points {qq, .. ., q,l}BS and knots defining
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intervals j € J, the control effort is approximated as:

6 2
LR BSABS | O
/ L@ dr oc D7 |QFSARGD) |
tin jeJ
0 2

where Q/BS are the B-Spline control points for interval j, and

AEOSS () is the interval-dependent evaluation matrix. The full

objective also includes a soft penalty on the final position:

ollgr—2 — gl3, with ® > 0, as g2 = @u_1 = qn
under the final stop condition (v(tr) = 0, a(r) = 0).
Constraints encompass initial conditions (X(fiy) = Xin,

fixing qo, q1, q2), bounds on velocity and acceleration using
MINVO-transformed points (Jv| < vpux for v € V/MV,
|a;| < amax for! € L\ {n— 1, n}), confinement to a planning
sphere S of radius r centered at d (||q — d||% < r2 for
q € Q}WV), and collision avoidance via separating planes
7 ;; (defined by normal n;; and offset d;;) between the agent’s
MINVO hulls QJMV and other agents’ committed polyhedra
C,‘ji

nfc+dj>0 VeeCyViel jel (22)
nfq+dj<0 vqe Q' vjeJ (23)

The total planning time is heuristically set as tr — #j, = ||g —
djl» / Vmax-

In POF+-MADER, we augment this formulation by intro-
ducing time-varying constraints derived from the predicted
obstacle trajectories 7,,(¢) output by POF. For each detected
obstacle m € Dj(¢), the predicted positions q,,(t + k|z) for
k =1, ..., Lareinflated by a safety margin ¢ (accounting for
UAV size, obstacle bounding box, and prediction uncertainty
via covariance ellipsoids from P,,(¢ 4 k|t)) to form restricted
regions. These regions are approximated as convex polyhedra
over discrete time intervals to ensure tractable inclusion in the
optimization. The augmented problem becomes:

min J(t;)
T

kinematic bounds and initial/final conditions,
7i(1) N Osatic = ¥, Yt € [1o, tr],

O Ngt) =0, Vj#i,Vteln, ],
()N Op(t) =B, Vm € Di(1), V1 € [10, 1]

where Ogaiic denotes static obstacle sets, 7j(f) committed
trajectories from other agents (broadcast in MADER’s
decentralized protocol), and @m(t) the inflated predicted
occupancy of obstacle m, computed as the convex hull
of qn(t) @ Ble + VAmax(Pw (1)), with B(r) a ball of
radius r and Apux the maximum eigenvalue of the position
submatrix of P, (¢) for uncertainty-aware buffering. This
constraint enforces a minimum separation dgfe = 7; +
rm + €, where r; and r, are agent and obstacle radii.
To ensure feasibility and robustness, POF+MADER employs
a collision check-recheck mechanism, extending MADER’s
two-phase validation. In the check phase, the optimized
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trajectory ;" is discretized at fine temporal resolution (e.g.,
At. = 0.01 s) and tested for intersections with @m(t)
using efficient separating hyperplane methods for polyhedral
sets. Mathematically, for each time #; and obstacle m,
intersection is detected if no hyperplane separates the agent’s
inflated position p;(#x) @ B(r;) from @m(tk). If a potential
collision is flagged, the recheck phase refines the test with
higher fidelity (e.g., continuous-time overlap via root-finding
on distance functions), confirming violations only if the
minimum distance falls below dgafe:

mtin di(t), @u(t)) < dsate, t € [tx — 8, tx + 8]

where d(-,-) is the Euclidean distance, and § a local
interval. This dual-phase approach mitigates false positives
from discretization artifacts while maintaining real-time
performance. For initial guesses, POF+MADER leverages
an adapted version of MADER’s Octopus Search algorithm (a
variant of A* tailored for B-Splines and dynamic constraints).
This search generates candidate control points by sampling
velocities satisfying vpax and amax, discarding nodes that
violate linear separability with predicted obstacle hulls,
sphere bounds, or voxel proximity checks. The resulting
feasible path, closest to the goal if exact reachability fails,
seeds the non-linear solver, ensuring rapid convergence.
Algorithm 2 encapsulates this process: predicted trajectories
from POF serve as inputs, and the loop iteratively adjusts
7i(t) (the committed segment of rl-*) upon collision detection.
Unlike the original MADER, which reacts to known obstacle
states, POF+MADER anticipates conflicts by leveraging
forward-propagated estimates, enabling preemptive rerout-
ing. For instance, if a fast-moving obstacle’s prediction
indicates an impending intersection, the optimizer biases the
solution toward evasive maneuvers, such as altitude changes
or lateral deviations, while preserving trajectory continuity
through soft penalties on deviations from prior commitments.
In the RMADER variant, this integration further benefits
from delay-aware broadcasting to ensure predictions remain
synchronized across agents despite communication latencies.

D. LOCALIZATION UNCERTAINTY IN OBSTACLE
PREDICTION

We conducted real-world experiments using a Crazyflie
2.1 drone within a motion capture system-equipped arena to
characterize localization uncertainty in obstacle prediction.
A predefined figure-eight trajectory was mathematically
defined using a parametric function to represent the ground
truth, and the drone was navigated along this path across five
trials, as illustrated in Fig. 3(a). The deviation between the
predefined positions and the real-time perceived positions,
recorded by the motion capture system, was computed
to quantify localization errors. These empirical deviations,
depicted in Fig. 3(b-d), provide a realistic estimate of
localization uncertainty encountered during UAV navigation
in dynamic environments.
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Localization Uncertainty and 3D Trajectory Comparison of Ground Truth and Real-Time Data
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FIGURE 3. Visualization of localization uncertainty and 3D Crazyflie drone trajectory. (a) 3D trajectory plot comparing ground truth and real-time data for
one trial, (b) X-axis localization error distribution, (c) Y-axis localization error distribution, and (d) Z-axis localization error distribution.

Algorithm 2 POF+MADER Proactive Trajectory
Planner
Data: Current agent state X;(¢,+), goal g;
Result: Collision-free trajectory segment 7/
begin
// Get latest forecasts from the
filter
{@m(t)}megi < POF_Module.getPredictions();
// Find a feasible initial
trajectory seed
Tseed <— A-star-Search(X;(fcurr), i, {Om(D)});
// Solve the augmented
optimization problem
7/ < NonlinearOptimize(yecq, {@m(t)});
// Validate the final trajectory
for safety
if isCollisionFree(t}, {@m(t)}) then
| return 7;
end
else
// Use previous trajectory
return 7'
end

end

To generalize this uncertainty, we model the observed
position of a dynamic obstacle as corrupted by Gaussian
noise:

(1) = qu(t) + N (1, T) (24)

where:
. qi,lfisy(t) € R3 is the noisy observed position of obstacle
m at time ¢,
e qu(7) € R3 is the true position of the obstacle,
e N(m, ) represents a multivariate Gaussian noise distri-

bution with mean vector g and a covariance matrix X.
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Empirical analysis of localization uncertainty across the
X, Y, and Z dimensions yielded the following statistical
parameters, derived from the motion capture data:

o X-axis: jy = 0.0232 m, 02 = 0.0197 m?,
o Y-axis: py = 0.0278 m, 0} = 0.0215 m?,
o Z-axis: p1; = 0.0053 m, 0.2 = 0.0034 m?.

These values reflect the mean and variance of position errors
in each dimension. These empirically-derived parameters are
then used to inform our Probabilistic Obstacle Filter (POF).
Specifically, the covariance matrix ¥ from our model is used
to define the measurement noise covariance matrix, R, within
the Kalman Filter. By feeding the noisy position data g, (r)
as the measurement input z,,(¢) and configuring R with our
real-world data, the POF can accurately estimate the true
state x,,(¢) and produce robust future trajectory predictions

Am(t) = {Qum(t]t), @u(t + 111), ..., @u(t + L|1)}.

V. EXPERIMENTATION AND RESULTS

This section presents the experimental evaluation of the
proposed approaches in both simulation and real-world
environments. The evaluation includes five algorithms in
simulation: the baselines MADER [8], POF+MADER,
Robust MADER (RMADER) [9], POF+RMADER, and
Ego-Swarm [5]. The real-world evaluation, due to hard-
ware and resource constraints, focuses on MADER and
POF+MADER only. All experiments were implemented in
the Robot Operating System (ROS) framework, with physical
trials conducted on Crazyflie 2.1 drones.

A. EXPERIMENTAL SCENARIOS

In both simulation and real-world tests, the agent was tasked
with navigating from a predefined start location to a goal
location while avoiding dynamic obstacles. Four represen-
tative dynamic obstacle motion models were considered as
shown in Fig. 4, and described below:

o (a) UAV encountering dynamic obstacles moving
in the opposite direction along a straight line: In
this experiment, the obstacles move in a straight line.
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FIGURE 4. Real-world experimental arena equipped with VICON motion
capture system, where a Crazyflie drone was used to represent the agent
(drone highlighted with green color), and another two drones (highlighted
with red and yellow color) were used to emulate dynamic obstacles. The
arena consists of a 6.23 m length, 3.6 m width, and 2.2 m height. The four
subfigures show experimental setups for different motion models of the
dynamic obstacles, such as (a) straight-line, (b) sinusoid, (c) trefoil-knot
trajectory, and (d) vertical wave motions.

An agent was tasked to navigate in a way that it had to
encounter all of the obstacles and avoid collisions.

o (b) UAV encountering dynamic obstacles moving
in the opposite direction along a sinusoidal wave
motion: The dynamic obstacles exhibit a sinusoidal
wave motion, and an agent was tasked to navigate
in a way that it has to face at least one dynamic
obstacle.

o (¢) UAV encountering dynamic obstacles moving
along a trefoil-knot trajectory: In this experiment,
an agent has to fly through multiple dynamic obstacles
exhibiting trefoil-knot trajectory. The agent may or may
not directly encounter obstacles.

o (d) UAYV encountering dynamic obstacles moving in a
vertical wave motion: In this experiment, an agent has
to fly through obstacles oscillating vertically along the
z-axis. The min-max of the z-axis for obstacle motion is
set so that the probability of interaction with the agent is
high.

In simulation, five dynamic obstacles were used; in
hardware experiments, two obstacles were deployed due to
space and safety constraints.
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B. EVALUATION METRICS

To ensure the statistical significance of the results,
we employed the following evaluation metrics for all
algorithms in both simulation and hardware:

o Success rate (%age): The ratio of runs in which
the agents successfully navigate from their starting
location to the target location without encountering any
collisions.

« Min obs separation (m): The mean of the shortest
Euclidean distances between an agent to any obstacle,
recorded in all the 10 runs.

o Time within the collision (s): The mean duration during
which a collision between an agent and a dynamic
obstacle continues to take place, recorded in all 10 runs.

« Average navigation duration (s): The mean duration
for the agents to navigate from their starting location to
their target location across all 10 runs.

o Average velocity of the drone (m/s): The average
velocity of the agent across all 10 runs in an experiment.

o Number of collisions per 10 runs: The total number of
collisions in all 10 runs by the obstacles with an inflated
agent.

C. SIMULATION SETUP

The simulation experiments were conducted on a laptop with
a 12th Gen Intel(R) Core(TM) i7-12700H CPU, running
Ubuntu 20.04 and ROS Noetic. The agent was modeled as
a sphere S; € R3 of radius 0.15 m, while obstacles were
modeled as bounding boxes of size 0.3 x 0.3 x 0.3 m. The
agent parameters were set as: maximum velocity 10 m/s,
maximum acceleration 20 m/s2, maximum jerk 30 m/s3, and
perception range 10 m. The start—goal separation was 90 m to
ensure that the agent encounters obstacles at its full cruising
velocity.

Each algorithm was tested across four obstacle velocities
(1, 3, 5, and 10 m/s) and four motion models. For
each velocity—motion pair, 10 runs were executed. For
instance, we executed 10 simulation runs where the obstacle
followed a trefoil knot trajectory at a velocity of 1 m/s.
We performed a total of 800 experimental runs in the
simulation (i.e., 4 velocities x 4 motions x 10 runs = 160
runs per algorithm).

D. SIMULATION RESULTS

The experimental setup, including dimensions, start and
goal locations, and velocities of both obstacles and agents,
was kept identical for all algorithms. The results, as pre-
sented in Table 1 and Fig. 5, highlight the performance
differentials between our approach (i.e., POF+MADER
and POF+RMADER) and the baselines (i.e., MADER [8],
RMADER [9], and Ego-Swarm [5]) algorithms.

1) COMPARISON BETWEEN MADER AND POF+MADER

Across all motion models, POF+MADER substantially
outperformed the baseline MADER [8]. The success rate
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TABLE 1. Performance differentials of our approach (i.e., POF+MADER and POF+RMADER) and the baselines (i.e., MADER, RMADER, and Ego-Swarm)
algorithms across different Obstacle Motions and velocities, in a simulated environment.

Success Rate Min. Obstacle Time Within Avg Navigation Avg Velocity of Collisions
Obstacle Motion Method (% age) Separation (m) Collision (s) Duration (s) Drone (m/s) per 10 Runs
Im/s 3m/s S5m/s 10m/s 1m/s 3m/s Sm/s 10m/s 1m/s 3m/s Sm/s 10m/s 1m/s 3m/s Sm/s 10m/s 1m/s 3m/s S5m/s 10m/s 1m/s 3m/s S5m/s 10 m/s
MADER 30 0 20 20 0.65 055 047 039 007 0.07 0.11 0.10 1332 1324 1332 1321 6.19 682 677 681 9 11 10 9
POF+MADER 90 80 80 50 073 073 073 062 002 004 006 005 1321 13.03 13.02 13.19 683 688 681 6.79 1 2 3 6
Straight line RMADER 50 30 30 0 055 041 050 030 049 027 049 074 1772 17.05 17.61 1743 520 540 522 527 11 16 19 34
POF+RMADER 50 70 60 40 043 056 057 050 056 0.17 0.18 0.7 17.34 1654 17.19 1693 529 519 535 542 17 8 8 18
ego planner 40 40 20 0 048 041 027 0.08 147 049 0.80 1.53 2554 26.85 26.64 2589 4.19 4.67 472 473 17 11 20 27
MADER 10 20 0 0 0.60 056 032 029 010 0.2 0.19 0.8 13.03 13.02 1344 13.07 688 690 674 6.87 14 11 15 25
POF+MADER 70 70 50 40 070 072 071 0.67 0.05 003 006 0.07 1297 1298 1321 1342 635 633 687 674 4 3 6 9
Sinusoid RMADER 40 30 30 20 050 045 036 045 041 023 055 062 1736 1685 1741 1743 531 546 529 529 17 16 24 27
POF+RMADER 70 60 50 40 059 059 052 047 013 016 027 032 17.02 1697 17.69 1608 539 543 523 505 7 11 15 20
ego planner 50 40 30 10 063 044 051 029 237 070 063 084 2857 27.53 26.84 2720 397 433 491 477 10 13 14 27
MADER 50 30 40 30 069 046 063 046 0.17 025 017 0.15 1326 1296 1296 1296 6.80 6.92 693 6.83 8 15 7 10
POF+MADER 80 70 80 40 087 127 117 076 0.09 0.2 011 0.11 1322 1350 1412 1330 6.79 670 647 635 2 6 2 8
Vertical wave RMADER 60 50 30 30 0.67 056 052 036 013 015 024 026 1679 1693 1695 17.01 546 541 540 539 4 8 14 18
POF+RMADER 80 80 60 50 072 085 077 059 005 004 013 0.08 17.01 17.13 1695 1723 536 532 540 530 2 2 6 7
ego planner 70 50 30 20 0.84 059 044 043 094 023 031 0.19 2720 27.68 2875 25.14 237 246 241 2.40 3 9 13 16
MADER 70 40 60 60 078 062 075 082 005 012 0.11 007 12.84 12.86 12.81 1282 695 697 699 6.95 5 7 4 5
POF+MADER 90 70 70 70 077 076 078 0.82 0.11 0.08 007 0.04 1281 1298 12.86 1298 6.96 6.69 694 691 1 3 3 3
Trefoil knot RMADER 80 80 80 70 086 072 081 066 009 006 005 003 1673 17.00 16.68 1660 547 539 548 551 3 4 3 3
POF+RMADER 100 100 90 70 1.03 103 089 069 0.00 0.00 002 005 1734 1752 1749 1731 527 521 521 527 0 0 2 3
ego planner 100 80 90 50 097 075 083 058 0.00 004 008 0.1 2559 2601 2587 2661 237 402 407 4.09 0 2 1 7

Mean Success Rate Across Obstacle Velocities in a Simulated Environment
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FIGURE 5. Success rate comparison of our approach (i.e., POF+MADER
and POF+RMADER) and the baselines (i.e., MADER, RMADER, and
Ego-Swarm) algorithms in a simulated environment, with obstacle
velocities of 1 m/s, 3 m/s, 5 m/s, and 10 m/s, respectively.

improved from 30% to 68.75% (+438.75%), while the
minimum agent—obstacle separation increased from 0.56 m
t0 0.8 m (4-41.7%). Collision statistics show a reduction from
10.3 to 3.9 per 10 runs, and the mean collision duration
decreased from 0.13 s to 0.07 s (—45.32%). These gains
indicate that POF integration enables more conservative
trajectory planning and ensures larger safety margins and
drastically lowers collision risk.

The improvement, however, introduces a modest cost
in efficiency. Average navigation time rose from 13.07 s
to 13.18 s (4+0.8%), with a corresponding decrease in
average drone velocity. The effect is most apparent at higher
obstacle velocities (> 3 m/s), where MADER tends to
attempt direct paths toward the goal and suffers collisions,
whereas POF+MADER actively adjusts to predicted obstacle
motion.

VOLUME 13, 2025

2) COMPARISON BETWEEN RMADER AND POF+RMADER
The integration of POF also substantially improved the
robustness of RMADER. Success rate improved from
44.38% in RMADER [9] to 66.88% (+22.5%), while min-
imum obstacle separation increased from 0.54 m to 0.68 m
(+24.42%). Collisions, which averaged 13.8 per 10 runs
in RMADER, were reduced to 7.9 under POF+RMADER,
with collision duration reduced from 0.3 s to nearly
0.15 s. Importantly, these safety gains were achieved
without increasing average navigation time or reducing
mean velocity. This shows that POF integration strengthens
RMADER’s robustness without compromising efficiency.
This is particularly valuable in high-speed sinusoidal and
trefoil-knot cases, where baseline RMADER experienced
more failures.

3) COMPARISON BETWEEN POF-BASED METHODS AND
EGO-SWARM
The Ego-Swarm planner, which is optimized for aggressive,
high-speed trajectories, struggled with reliability in our
test scenarios mentioned in subsection V-A, successfully
completed only 45% of trials. Both POF+MADER and
POF+RMADER outperformed in terms of safety and
reliability, when compared to the Ego-Swarm [5] baseline.
Ego-Swarm achieved an average navigation time (26.7 s)
with mean velocity (3.8 m/s). Safety margins also improved
markedly: from 0.53 m in Ego-Swarm to 0.8 m (+50.0%) in
POF+MADER and 0.68 m (426.5%) in POF+RMADER.
Ego-Swarm recorded the highest collision statistics, aver-
aging 11.9 collisions per 10 runs with a mean collision
duration of 0.67 s. In comparison, POF+MADER reduced
collisions to 3.9 with an average duration of 0.09 s,
while POF+RMADER reduced collisions to 7.9. These
results indicate that Ego-Swarm’s aggressive trajectory
generation favors speed but compromises safety. By contrast,
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Performance of POF-based Methods and Ego-Swarm
Under Localization Uncertainty
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FIGURE 6. Success rate comparison of our approach (i.e., POF+MADER
and POF+RMADER) and baselines (i.e., MADER [8], RMADER [9], and
Ego-Swarm [5], under localization uncertainty in simulation, with
obstacle velocities of 1 m/s, 3 m/s, 5 m/s, and 10 m/s, respectively.

POF-based methods achieve a more balanced outcome,
trading slight increases in navigation time for substan-
tial improvements in robustness. This makes them more
appropriate for safety-critical UAV operations in dynamic
environments.

4) PERFORMANCE UNDER LOCALIZATION UNCERTAINTY
To evaluate robustness against imperfect state estimation,
we examined the impact of localization uncertainty on all
algorithms under the sinusoidal motion model. This scenario
was chosen for two reasons. First, both straight-line and
vertical wave motions are predominantly confined to a single
axis, which limits the complexity of their trajectories and
makes them less susceptible to the effects of localization
errors. In contrast, both trefoil-knot and sinusoid motions
exhibit complex trajectories; however, the sinusoidal motion
is characterized by continuous lateral oscillations and a less
predictable periodicity, as opposed to the structured and
repeating loops of the trefoil-knot. This intrinsic unpre-
dictability in the lateral plane makes the sinusoidal motion
particularly sensitive to localization uncertainty. Second,
from the baselines results in Table 1, sinusoidal motion
represented one of the most challenging cases, where baseline
methods such as MADER and Ego-Swarm recorded their
lowest success rates, whereas POF-based methods main-
tained significant improvements. This observation motivated
our decision to further challenge POF-based methods by
introducing localization uncertainty within the context of a
sinusoidal obstacle trajectory.

The experimental setup remained identical to Section V-C,
with dynamic obstacles following sinusoidal paths at veloc-
ities of 1, 3, 5, and 10 m/s. At each velocity, 10 runs were
conducted with localization uncertainty applied to obstacle
positions. The comparative outcomes are summarized in
Table 2.
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As shown in Fig. 6 and Table 2, the results show
that localization uncertainty degrades the performance
of all algorithms, but to varying degrees. MADER and
Ego-Swarm experienced the sharpest drops in success
rate, confirming their limited resilience to state estimation
errors. RMADER showed moderate robustness, but still
suffered from non-negligible collision rates. In contrast,
POF-integrated approaches remained consistently superior:
POF+MADER retained a success rate 17.5% lower than
in the nominal case yet still outperformed MADER by a
wide margin, while POF+-RMADER sustained the highest
overall reliability with only minor reductions in performance.
Importantly, both POF-based methods preserved signifi-
cantly larger obstacle separation distances than the baselines,
which indicates that POF-integration substantially enhances
robustness by maintaining conservative safety buffers and
collision-free operation in most trials, under localization
uncertainties.

E. REAL-WORLD EXPERIMENTS

To validate implementation feasibility beyond simula-
tion, we conducted hardware experiments using Crazyflie
2.1 UAVsina6.23 x 3.6 x 2.2 m indoor arena equipped with
a VICON motion capture system. In each experiment, one
Crazyflie acted as the navigating agent while two additional
Crazyflies emulated dynamic obstacles. Due to the limited
onboard computation of the Crazyflie platform, trajectory
planning was executed in real-time on a host computer, with
commands transmitted to the drones via Crazyradio PA.
Reflective markers were mounted on all drones for motion
capture, and the Crazyswarm library [50] was used to stream
control inputs from the host to the UAVs. An illustration of
the experimental setup is shown in Fig. 4.

The real-world evaluation was performed only on MADER
and POF+MADER because of two main considerations:
(i) MADER serves as the standard baseline in decentralized
trajectory planning, which makes it the most appropriate
reference for hardware validation; and (ii) POF+MADER is
our proposed extension, enabling direct assessment of prob-
abilistic filtering under realistic sensing, communication,
and actuation conditions. With the hardware experiments,
we want proof-of-concept feasibility and validation of POF
integration in real-world on physical UAVs.

For the dynamic obstacles, we use the same four types
of trajectories (i.e., straight line, sinusoid, vertical wave,
and trefoil-knot trajectories), as shown in Fig. 4. For each
trajectory, 10 runs were performed at obstacle velocities of
0.5, 1.0, and 1.5 m/s, resulting in 120 trials per algorithm.
An experiment is considered successful if the agent navigates
from their start location to the goal location without colliding
with the obstacles. For safety purposes, the boundaries of
the obstacles are inflated. Specifically, the actual diameter of
the obstacle is 0.15 m, and for collision avoidance, this was
inflated to 0.3 m (i.e., a 100% increase in size). A collision is
considered to have occurred if an agent enters this inflated
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TABLE 2. Comparison of POF-based methods and the baselines (under localization uncertainty).

Min. Obstacle
Separation (m)

Success Rate

Obstacle Motion Method (% age)

Time Within
Collision (s)

Collisions
per 10 Runs

Avg Navigation
Duration (s)

Avg Velocity of
Drone (m/s)

Im/s 3m/s 5m/s 10m/s 1m/s 3m/s 5m/s 10m/s 1m/s

3m/s 5m/s

10m/s 1m/s 3m/s 5m/s 10m/s 1m/s 3m/s 5m/s 10m/s 1m/s 3m/s 5m/s 10m/s

MADER
POF+MADER
RMADER
POF+RMADER
ego planner

10
70
40
70
50

0.60
0.70
0.50
0.59
0.63

0.56
0.72
0.45
0.59
0.44

0.32
0.71
0.36
0.52
0.51

0.10
0.05
0.41
0.13
2.37

Sinusoid

0.12
0.03
0.23
0.16
0.70

0.19
0.06
0.55
0.27
0.63

0.18
0.07
0.62
0.32
0.84

13.03
12.97
17.36
17.02
28.57

13.02
12.98
16.85
16.97
27.53

13.44
13.21
17.41
17.69
26.84

13.07
13.42
17.43
16.08
27.20

6.88
6.35
5.31
5.39
3.97

6.90
6.33
5.46
543
4.33

6.74
6.87
5.29
5.23
4.91

6.87 14 11 15 25
6.74 4 3 6 9

529 17 24 27
5.05 7 11 15 20
471 10 14 27

Mean Success Rate Across Obstacle Velocities
in Real-World Experiments
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W2, POF+MADER
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FIGURE 7. Performance evaluation of MADER and POF+MADER in a
real-world environment, with obstacle velocities of 0.5m/s, 1.0m/s, and
1.5m/s, respectively.

boundary, which ensures a safer buffer zone around the
obstacle.

F. REAL-WORLD RESULTS

Table 3 and Fig. 7 present the results. POF+MADER
consistently achieved higher success rates, fewer collisions,
and greater minimum separation than MADER, validating the
safety improvements observed in simulation. For example,
in sinusoidal motion at 1.5 m/s, POF4+MADER achieved a
90% success rate compared to 65% for MADER.

VI. DISCUSSION

Our experimental evaluation, presented in Section V, pro-
vided strong evidence that integrating a probabilistic obstacle
filter (POF) into optimization-based planners like MADER
and RMADER yields significant gains in robustness. This
section moves beyond the quantitative results to interpret their
deeper implications, discussing the fundamental advantages
of our proactive planning architecture, the reasons for its
resilience to uncertainty, and the practical considerations for
real-world deployment.

A. THE ADVANTAGE OF PROACTIVE PLANNING UNDER
UNCERTAINTY

A core insight from our comparative analysis is the funda-
mental advantage of proactive planning over purely reactive
strategies. The baseline planners, particularly MADER and
Ego-Swarm, perform adequately in simple scenarios but
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exhibit brittle performance as obstacle dynamics become
more complex or perception becomes noisy. This is because
their planning horizon is limited; they react to the current
state of the world, leaving little time to generate smooth,
safe maneuvers in response to fast-approaching or erratically
moving obstacles.

In contrast, our POF-integrated methods succeed by
effectively “looking into the future.” POF provides the
planner with a high-fidelity forecast of where obstacles are
most likely to be, giving the optimizer a crucial “heads-up.”
This allows it to generate evasive trajectories that are not
just reactive, but preemptive. The most compelling finding
is the nature of the trade-off this provides: our results show
nearly 39% improvement in success rate for a negligible
0.8% increase in navigation time. This demonstrates that
the computational cost of filtering and prediction is far
outweighed by the gains in safety and reliability, representing
a highly favorable trade-off for any safety-critical application.

B. STATE ESTIMATION AS A FOUNDATION FOR ROBUST
PLANNING

The performance of our system under injected sensor noise
reveals another key principle: robust planning is critically
dependent on robust state estimation. The sharp decline in
performance for the baseline planners under localization
uncertainty highlights their sensitivity to noisy inputs.
A planner without a filtering layer is forced to react to every
spurious measurement, which can lead to jerky, inefficient,
or unsafe trajectories.

The resilience of POF+MADER and POF+RMADER
stems directly from the POF’s ability to ‘“‘see through
the noise.” By maintaining a probabilistic belief over the
obstacle’s state (including its velocity and covariance),
the filter effectively smoothes the raw measurements and
provides a stable, physically plausible estimate to the
planner. The planner, therefore, operates on a clean, reliable
stream of data, allowing it to make more consistent and
accurate decisions. This confirms that for real-world robotics,
where perfect perception is impossible, tightly coupling the
planning and estimation processes is essential for achieving
robust autonomy.

C. LIMITATIONS AND EXTENSIONS

The combination of simulation and hardware results supports
the feasibility of POF integration for real-world UAV
navigation. Its lightweight nature makes this advanced
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TABLE 3. Real-world Comparison of POF+MADER with MADER.

Success Rate Min. Obstacle Time Within Avg Navigation Avg Velocity of Collisions
Obstacle Motion Method (% age) Separation (m) Collision (s) Duration (s) Drone (m/s) per 10 Runs
Im/s 3m/s Sm/s 1m/s 3m/s Sm/s 1m/s 3m/s Sm/s 1m/s 3m/s Sm/s 1m/s 3m/s Sm/s 1m/s 3m/s 5Sm/s

Straicht line MADER 50 40 0 0.18 0.15 0.14 09 129 181 13.60 13.53 14.39 0.61 0.62 0.63 5 6 11
g POF+MADER 90 80 70 030 027 024 019 041 049 1338 13.67 1342 0.62 0.61 0.62 1 2 4
Sinusoid MADER 60 50 40 019 0.17 0.15 067 266 271 1295 1326 13.14 0.64 0.61 0.62 4 10 12
) POF+MADER 90 80 70 031 023 019 051 037 136 1333 1331 1327 0.62 0.62 0.62 2 3 6
Vertical wave MADER 20 10 10 016 0.12 013 214 3.06 3.07 13.08 1342 13.70 0.59 061 0.61 9 10 12
POF+MADER 60 50 40 019 022 016 1.02 1.66 190 13.07 13.68 13.50 0.58 0.61 0.61 4 5 8
Trefoil knot MADER 80 60 70 026 022 030 041 143 092 13.60 13.57 13.32 0.60 0.61 0.62 2 5 3
POF+MADER 80 80 80 043 037 046 051 048 088 13.11 12.60 13.05 0.61 063 0.63 2 2 2

predictive capability accessible to small aerial platforms
without requiring expensive, high-power onboard computers.
However, the current implementation operates under certain
assumptions that define its scope and potential directions for
extension.

1) CURRENT LIMITATIONS

First, we employ a constant-velocity motion model that
proved effective for non-cooperative obstacles in our exper-
iments. This model supports computational efficiency and
short-term prediction but complex maneuvers such as coor-
dinated turns or evasive actions may require more advanced
models.

Second, the Gaussian noise model effectively represents
motion-capture and typical IMU-based localization uncer-
tainties, but real-world sensors may exhibit non-Gaussian
characteristics, including multi-modal distributions from
vision-based detectors or heavy-tailed distributions from
intermittent failures.

Third, hardware validation was conducted on Crazyflie
2.1 platforms in controlled indoor environments with limited
dynamic obstacles. Although this provides compelling proof-
of-concept feasibility, outdoor scenarios introduce GPS
degradation, wind disturbances, and larger obstacle popula-
tions that exceed this constrained operational envelope.

Based on these limitations, several extensions would
broaden POF+MADER’s applicability to complex real-
world deployments.

2) MULTI-AGENT COORDINATION EXTENSIONS

The current decentralized architecture treats each agent’s
obstacle tracking independently. However, in scenarios
where multiple agents have overlapping perception ranges,
cooperative estimation strategies could substantially improve
prediction accuracy. Distributed filtering approaches, such as
consensus-based estimation in sensor networks [51], could
be used to fuse obstacle measurements across agents to
reduce uncertainty bounds. This collaborative sensing would
be particularly valuable in GPS-denied environments where
individual sensor reliability degrades due to occlusions.
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Agents can further optimize performance by sharing
learned obstacle behavior patterns via distributed databases.
When one agent observes recurring motion characteristics
(such as pedestrian crosswalk behavior or vehicle lane-
following patterns), this information could propagate to other
swarm members, enabling more accurate prediction than
generic constant-velocity models provide.

3) HETEROGENEOUS OBSTACLE TYPES HANDLING
Real-world environments contain diverse obstacle types with
distinct motion characteristics. Integrating upstream obstacle
classification would enable motion model selection tailored
to obstacle type. For instance, pedestrian detection could
invoke Social Force Models [52], which capture goal-directed
behavior and social interactions, and vehicle detection would
trigger car-following models such as the Intelligent Driver
Model [53] that represent acceleration patterns and lane
constraints.

To handle abrupt maneuver changes without explicit type
information, Interacting Multiple Model (IMM) filters [54]
could be used to maintain parallel motion hypotheses
(constant velocity, coordinated turn, sudden stop) with
dynamically updated probabilities based on measurement
likelihood. This multi-hypothesis approach provides robust-
ness to unpredictable behaviors such as birds’ evasive
responses or vehicles’ emergency braking, common in
outdoor scenarios. Additionally, extending obstacle repre-
sentation from our spherical models to oriented bounding
boxes would enable tighter collision constraints for elongated
obstacles and potentially reduce planning conservatism.

4) OUTDOOR ENVIRONMENT ADAPTATION

Outdoor deployment introduces systematic challenges
addressable through targeted extensions. Wind disturbances
violate constant-velocity assumptions over longer horizons;
incorporating measured or estimated wind conditions into the
process noise covariance (Q matrix) would maintain predic-
tion fidelity and explicitly represent increased uncertainty in
planning constraints. For navigation in GPS-denied areas,
integrating POF with vision-based SLAM systems would
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require obstacle tracking and ego-motion estimation to be
coupled.

These extensions build upon the modular POF+MADER
foundation rather than requiring a fundamental redesign.
Future work will prioritize heterogeneous classification and
multi-model estimation to directly address current modeling
limitations and enable outdoor validation.

VIl. CONCLUSION AND FUTURE WORK

In this work, we presented a novel hybrid architecture,
POF4+MADER, that successfully bridges the critical gap
between the need for proactive planning and the reality of
perception uncertainty in dynamic environments. By integrat-
ing a lightweight, real-time probabilistic obstacle filter into
the core of state-of-the-art multi-agent trajectory planners,
we have eliminated their restrictive reliance on a priori
knowledge of obstacle trajectories. The proposed approach
transforms these planners into robust, predictive systems
capable of generating safer paths by explicitly modeling
and reacting to the forecasted motion of unknown dynamic
obstacles.

Comprehensive validation through simulation and hard-
ware experimentation shows the advantages of the pro-
posed proactive POF-integrated methods. In simulation
benchmarks, POF-based methods outperformed baseline
methods in terms of safety and reliability, as demon-
strated by collision rate reduction of up to 39% without
compromising navigational efficiency. The practical fea-
sibility of this lightweight architecture is then confirmed
through its successful deployment on Crazyflie 2.1 UAVs.
In these hardware trials, POF+MADER consistently outper-
formed MADER under realistic sensing and communication
conditions, confirming the practical applicability of the
approach.

POF-based methods presents advantages, limitations, and
areas for future direction, as outlined in subsection VI-C
such as integrating more advanced motion models and
scaling the validation to larger and outdoor aerial
platforms.
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