
DyPolDroid: Protecting Users and Organizations
from Permission-Abuse Attacks in Android

Carlos E. Rubio-Medrano1, Matthew Hill2,
Luis M. Claramunt3, Jaejong Baek3, and Gail-Joon Ahn3

1 Texas A&M University - Corpus Christi
carlos.rubiomedrano@tamucc.edu

2 Independent Researcher
3 Arizona State University

{lclaramu, jbaek7, gahn}@asu.edu

Abstract. Android applications are extremely popular, as they are wide-
ly used for banking, social media, e-commerce, etc. Such applications
typically leverage a series of Permissions, which serve as a convenient
abstraction for mediating access to security-sensitive functionality, e.g.,
sending data over the Internet, within the Android Ecosystem. How-
ever, several malicious applications have recently deployed attacks such
as data leaks and spurious credit card charges by abusing the Permis-
sions granted initially to them by unaware users in good faith. To allevi-
ate this pressing concern, we present DyPolDroid, a dynamic and semi-
automated security framework that builds upon Android Enterprise, a
device-management framework for organizations, to allow for users and
administrators to design and enforce so-called Counter-Policies, a conve-
nient user-friendly abstraction to restrict the sets of Permissions granted
to potential malicious applications, thus effectively protecting against
serious attacks without requiring advanced security and technical exper-
tise. Additionally, as a part of our experimental procedures, we introduce
Laverna, a fully operational application that uses permissions to provide
benign functionality at the same time it also abuses them for malicious
purposes. To fully support the reproducibility of our results, and to en-
courage future work, the source code of both DyPolDroid and Laverna

is publicly available as open-source.

Keywords: Permission-Abuse Attacks · Access Control · Android Enterprise

1 Introduction

In recent years, there has been an increase in the number of malicious applica-
tions in the Android Ecosystem [1], targeting users with a large variety of at-
tacks, e.g., harvesting private data [2], making unwanted credit card charges [3],
retrieving the location of users [4], etc. Whereas the root causes for such attacks
have been largely explored in the literature [5], an increasing number of appli-
cations look to use and abuse the permissions granted legitimately by users to



carry out attacks. These so-called Permission-Abusing Applications (PA-Apps)
initially pose as benign and request users to grant a seemingly normal set of per-
missions to deliver some harmless functionality, e.g., sorting out contact infor-
mation. However, they later abuse the granted permissions to facilitate attacks,
e.g., leaking the user’s contacts to a remote server via the Internet [6, 7].

Also recently, Android Enterprise (AE) [8] has emerged as a convenient
framework for monitoring and configuring Android devices in a remote fashion,
e.g., automatically installing and uninstalling apps and services. These features
allow for AE administrators, AE-Admins for short, to manage and enforce se-
curity policies protecting users and organizations from costly attacks, e.g., by
automatically removing previously-known malicious apps from devices at once. In
such a context, AE-Admins may also want to prevent the deployment of attacks
carried out by PA-Apps that are unknown beforehand, and may be downloaded
and installed on devices by users at any moment of time. However, solving such
a problem involves the following challenges:

1. Detection. How to detect previously-unknown PA-Apps running on devices?
2. Prevention. How to efficiently prevent PA-Apps from carrying out attacks?.
3. Administration. How to help AE-Admins to deploy protections against PA-

Apps to several different devices in an straightforward and efficient way?
4. Flexibility. How to keep protections against PA-Apps up-to-date with respect

to changes in the configuration of devices, i.e., the installation of new apps?.
5. Adoption. How to protect users from PA-Apps without requiring security

expertise and/or modifications to either devices, the OS, or PA-Apps?.

To address these challenges, this paper presents DyPolDroid (Dynamic Poli-
cies in Android), a dynamic, semi-automated security framework for effectively
detecting and neutralizing PA-Apps by means of the following:

1. Detection. DyPolDroid starts by identifying a series of Behavioral Patterns:
pairs of Permissions that, if used in combination inside the code of a potential
PA-App, may facilitate a successful attack, e.g., combining the Internet and
Read-Contacts permissions to perform a data leak [9].

2. Prevention. Then, DyPolDroid allows for users and AE-Admins to easily
write Counter-Policies restricting the occurrence of Behavioral Patterns
within Android apps. Later, such Counter-Policies are evaluated and trans-
lated into Device Policies: lists of permissions that are allowed or denied for
each potential PA-App, and are sent for enforcement on devices via the AE.

3. Administration. Also, DyPolDroid allows for AE-Admins to easily configure
and deploy default security Counter and Device Policies restricting the per-
missions patterns that may be abused by potential PA-Apps, thus effectively
preventing them from carrying out attacks on AE-managed devices.

4. Flexibility. In addition, up-to-date information on the specific configuration
of each device can be also retrieved by means of the AE, and later leveraged
to create custom Counter-Policies that can not only account for previously-
unknown, newly-installed PA-Apps, but may also enforce other relevant or-
ganizational policies, e.g., restricting gaming apps during office hours.



5. Adoption. Finally, DyPolDroid requires no manual, user-made configurations
of devices, nor it requires modifications to the device OS, the supporting
hardware, nor modifications to the code of potential PA-Apps, as required
by other approaches in the literature [10, 11], which greatly increases its
suitability and convenience for being successfully deployed in practice.

Overall, this paper makes the following contributions:

1. We present a description of PA-Apps, including their relationship with other
types of malicious apps for Android that have been studied in the literature.

2. We introduce DyPolDroid, which provides an effective solution for counter-
acting PA-Apps at the same time it offers an convenient degree of automation
that requires no advanced security expertise from either users or AE-Admins.

3. As a part of our experimental procedure, we also introduce Laverna, a fully
operational PA-App, which uses permissions to provide benign functionality,
e.g., send automated text messages to phone contacts, at the same time it
also abuses them for malicious purposes, e.g., leaking the name and phone
of all contacts to a remote server over the Internet.

4. Finally, to support the reproducibility of our experimental results, and to
encourage future work based on our reported findings, the source code of
both DyPolDroid and Laverna is publicly available as open-source [12].

This paper is organized as follows: Sec. 2 presents some background on the
technologies later explored in the paper, and provides a concise definition of
the problem that is then later addressed in Sec. 3. We provide a description
of a preliminary procedure we have conducted to evaluate the effectiveness of
DyPolDroid in Sec. 4, and then discuss some future work and conclude the paper
in Sec. 6. A preliminary version of this paper appeared as a poster abstract in
the Proceedings of the 6th IEEE European Symposium on Security and Privacy
2021 (Euro S&P 2021) conference [13].

2 Background and Problem Statement

2.1 Android Permissions

In the Android Ecosystem, apps must request and obtain so-called Permissions,
which serve as convenient abstractions for mediating accesses to the resources
of the host device, e.g., sending data over the Internet, turning the camera
on and off, sending SMS texts and calls, etc. Android Permissions have been
extensively studied in the literature, and have seen a number of changes over
the years [14–16]. Historically, there are two major recognizable eras: the all-or-
nothing era, and the run-time era. Prior to Android 6.0, all permissions requested
by an app needed to be granted by users at installation time; users were presented
with a list of permissions to accept or deny once the app have been downloaded
but before installation could begin. If users would choose to deny the requested
permissions, the installation of the app would fail. With the release of Android
6.0, the permission model was modified such that apps needed to request access



to a permission the first time that they wanted to use it, which allowed for a
more fine-grained approach in which users would accept or reject each permission
individually [17]. Finally, once a permission is granted to an app, it can be
used repeatedly by the instructions of the app’s code to access the functionality
guarded by it, e.g., using the Internet permission to access the Internet.

2.2 Android Enterprise

Android Enterprise (AE) is a device management framework that allows for or-
ganizations to remotely monitor and configure Android-run devices, e.g., auto-
matically installing and uninstalling apps without extensive user intervention [8].
In addition, for security purposes, AE leverages the permission model described
before to dynamically update, e.g., grant or deny, the permissions requested by
individual apps, thus allowing for AE administrators to remotely allow or restrict
the functionality of the apps installed on a managed device at will. Devices can
be remotely managed in two different modes: in the Fully-Managed mode, de-
vices may have their configurations set remotely by an AE administrator, leaving
little room for users to change the settings of the device. Alternatively, in the
Bring-Your-Own-Sevice (BYOD) mode, devices may allow for two different pro-
files to be configured and co-exist inside a device: a work profile fully controlled
by an AE as described before, and a user profile that can be left for users to
configure at will, e.g., downloading and installing apps at will.

In addition, leveraging the features provided by AE, administrators can also
obtain real-time device configuration data, which may allow them to dynami-
cally send and install, a.k.a., push, customized, app-specific permissions on the
device depending on the current configuration and any other related context
information. This introduced a convenient approach for remote security man-
agement that removes the need of instrumenting the device itself, the device
OS, the code of apps (APK files), or any other supporting API, as required by
previous approaches in the literature [18]. However, this approach for remotely
updating permissions may be in fact limited by the network bandwidth avail-
able to the device at a given moment of time, which may affect the deployment
of immediately needed changes, e.g., denying permissions to a potentially mali-
cious app that has been just detected by AE as installed in the managed device.
Also, AE is currently available to devices running versions of Android greater
than 5.0.*, and the BYOD mode discussed before is only available to versions of
Android running an API level 23 to 29. For the purposes of this paper, we will
assume the devices implementing our approach are managed by an existing AE,
follow the Android version features just mentioned, and implement either the
fully-managed mode or the BYOD mode with a work profile as discussed before.

2.3 The Behavior of Android Applications

For the purposes of this paper, we define Application Behavior, or simply Be-
havior for short, as any functionality depicted by an app when executed. Exam-
ples include, but are not limited to: gaming, social networking, picture-taking,



Fig. 1. Classifying Apps in Android based on Behavior. In this paper, we are interested
in detecting and neutralizing PA-Apps, which are always regarded as malicious.

etc., Conversely, an Attack is a well-recognized and highly-undesirable behavior,
which may have a negative effect on the user and/or the device. Illustrative ex-
amples may include the violation of user privacy via leaking of user contacts, or
a financial affectation via unwanted texts or calls.

Having said this, an app is said to be Benign if it strictly provides the be-
havior expected by the user, as stated either by means of a formal or informal
documentations and/or descriptions, without causing any affectation to the user
or the device. In contrast, a Malicious app attempts to subvert the normal,
intended use of the expected behavior in an attempt to cause an unwanted
affectation either to the user or the device itself [10, 11]. In addition, an Over-
Privileged app requests more permissions than the ones needed to provide its
expected benign behavior, and can either neglect such extra permissions, thus
staying as a benign app, or can actively use them in a malicious way [19–22].

Finally, a Permission-Abusing app (PA-App) is a seemingly benign app that
is also secretly malicious: its formal or informal usage documentation states that
it uses permissions in an expected, harm-free way, e.g., for sending messages to
contacts via the Internet, but it may also use them in a malicious, unwanted,
and potentially user-harming way as well, e.g., for leaking contacts data to a
remote server [3], installing tracking software [4] or collecting user data [2].

2.4 Problem Statement

For the purposes of this paper, we assert that apps that request access to permis-
sions and knowingly misuse them are malicious, i.e., they are PA-Apps, as such
permissions may allow for them to successfully carry out attack(s). Therefore,
we aim to detect all potential apps installed on devices that may be PA-Apps, and
we also aim to prevent them from successfully exploiting any granted permissions



Fig. 2. How DyPolDroid Works: a User signs up for an Android Enterprise (1) and
moves on to write Counter-Policies (2), which are later evaluated against the Attack
Patterns obtained from any installed PA-Apps (3), producing a Device Policy that is
then sent to the Device (4). As a result, PA-Apps have their permissions blocked (5).

at run-time. Following Fig. 1, detecting all potential over-privileged apps that
may or may not be malicious is out of scope of this paper. Also, the detection
and prevention of all other malicious Android apps that carry out attacks by
means of other techniques other than the abuse of permissions, e.g., dynamic
library updates [23], is also out of scope.

3 Our Approach: Dynamic Permission Updates for
Potential PA-Apps via the Android Enterprise

To address the problem just described, we now introduce DyPolDroid (Dynamic
Policies in Android): a dynamic security framework graphically shown in Fig. 2,
in which both users and AE-Admins can actively restrict the behavior of PA-
Apps, thus preventing the occurrence of costly attacks in Android devices.

We start in Section 3.1 by introducing the concept of Behavioral Patterns:
pairs of permissions which, if used together within an app’s code, may facilitate
permission-abusing attacks. Then, we move on to describe in Section 3.2 how
users and AE-Admins can write so-called Counter-Policies for restricting Be-
havioral Patterns in Android apps. As it is further described in Section 3.3, such
patterns are in turn discovered by analyzing the data flow of potential PA-Apps
installed on a device, and are key component for ultimately producing so-called
Device Policies, which, as it will be shown in Section 3.4 are subsequently en-
forced by leveraging the dynamic permission updates provided by the AE.



1 <Rule RuleId="Laverna_Attacks" Effect="Deny">

2 <Target >

3 <AnyOf > <AllOf > <Match Id="boolean -equal">

4 <AttributeValue >true</AttributeValue >

5 <AttributeDesignator AttributeId="Laverna"/>

6 </Match > </AllOf > </AnyOf >

7 <AnyOf > <AllOf > <Match Id="boolean -equal">

8 <AttributeValue >true</AttributeValue >

9 <AttributeDesignator AttributeId="Steal_Contacts"/>

10 </Match > </AllOf >

11 <AllOf ><Match Id="boolean -equal">

12 <AttributeValue >true</AttributeValue >

13 <AttributeDesignator AttributeId="Steal_Messages"/>

14 </Match ></AllOf > </AnyOf >

15 </Target >

16 </Rule>

Listing 1.1. A Counter-Policy for the Laverna PA-App.

3.1 Behavioral Patterns

Following the description started in Section 2.1, we define a Behavioral Pattern
as a sequence of permissions required by apps to execute either a benign behavior
or an attack [9,24]. As an example, the gaming behavior may include the pattern:
(CAMERA, INTERNET), whereas a contact-leaking attack may require an pattern
such as (READ CONTACTS, INTERNET). Android apps, including PA-Apps, may in
turn depict different behavioral patterns, and there may be an overlap between
the permissions exhibited in benign and attack patterns, e.g., the Internet

permission being simultaneously used for sending messages (benign) and leaking
private data (attack) as just discussed.

3.2 Writing Counter-Policies

Initially, Counter-Policies are written using a series of templates depicting a sub-
set of XACML, the de facto language for authorization and access control [25].
Users and AE-Admins are then able to protect their device by specifying a variety
of rules including features like: which applications can be installed, the default
permission policy of any newly installed application, and what potential attacks
the user would like to defend against. More interestingly, rules may also include
what Behavioral Patterns may be allowed for Android apps that are installed
on the device in the future. As an example, Listing 1.1 shows an excerpt of a
Counter-Policy for Laverna, a self-developed PA-App that will be featured in
Section 4. Two Behavioral Patterns, namely, Steal Contacts and Steal Messages,
which correspond to the namesake attacks, are specified in lines 7-10 and 11-14.
Figure 3 presents a graphical depiction of the process just discussed: Behavioral
Patterns can be leveraged to construct custom Counter-Policies, which are then



Fig. 3. From Behavioral Patterns to Device Policies: Templates describing Behavioral
Patterns are leveraged by users and AE-Admins to write Counter-Policies (1), which
are then fed as an input to DyPolDroid’s Policy Engine (2), so they can be turned into
Device Policies (3). Later, Device Policies are handled by a Policy Enforcement Agent
(4), which also retrieves up-to-date device configuration data from the Device (5).

subsequently processed by DyPolDroid to create Device Policies. In addition,
Counter-Policies leverage the conflict resolution features provided by XACML
for the case when multiple policies are applied to the same device, allowing for
DyPolDroid to resolve conflicts before any resulting policies are sent to the user’s
device, as show in Figure 3 (2).

3.3 Discovering Behavioral Patterns

Our Behavioral Patterns are inspired by a set of predetermined attack vectors
that were found to be common place across a number of known malicious apps [9].
Those vectors can be represented as a sequence of instructions mapping data
from a source instruction to a sink instruction within the app’s code. Normally,
both source and sink instructions will include a function call to an Android
Class Function (ACF) performing a sensitive functionality operation, which will
be in turn guarded by a given Android Permission. For example, the Behavioral
Pattern: (READ CONTACTS, INTERNET), may be depicted within a PA-App code as
a sequence of instructions depicting the flow of sensitive data, e.g., user’s contact
information, in which the first instruction extracts the contacts (source) and the
last one sends them to a remote server via the Internet (sink).

To detect the occurrence of Behavioral Patterns within potential PA-Apps,
DyPolDroid leverages Taint Tracking [26], a well-known data flow analysis tech-
nique. Initially, data flow sequences are obtained from the APK file of the PA-
App by leveraging FlowDroid [27]. Then, for each sequence, its source and sink
instructions are cross-referenced against a list containing a series of mappings
between ACFs and the Permissions such ACFs require for successful execution,
as mentioned before. If the permissions mapped to both the sink and source
instructions are found to depict a Behavioral Pattern P, then the permissions
included in P are returned as a result for further processing, as detailed next.



Fig. 4. Creating Device Policies in DyPolDroid. The set of authorized permissions from
each Behavioral Pattern is obtained by evaluating Counter- Policies (1)(2), whereas the
set of observed permissions is obtained via Taint Tracking analysis on potential PA-
Apps (3). Later, the set of resulting permissions is calculated by comparing the denied
and the requested permissions, and it is later encoded as a Device Policy (4), which is
set out to the Device for enforcement via the AE (5).

3.4 Device Policies and Enforcement

Fig. 4 gives an overview of how Device Policies are created. First, the set of au-
thorized permissions is calculated by evaluating the Counter-Policies that may
be relevant under the current context, e.g., the AE, the organization, the user,
the device, etc. Second, the set of observed permissions, as depicted by the code
of a potential PA-App, is obtained by means of the procedure described in the
previous Section. Third, the set of resulting permissions is obtained by intersect-
ing the sets of authorized and observed permissions. These resulting permissions
are then updated within the Device Policy to allow or block their future usage.
Listing 1.2 shows a sample Device Policy that blocks the READ CONTACTS (lines
6-7) and READ SMS (lines 8-9) permissions for the Laverna PA-App that will be
discussed in Section 4.

Once a newly-generated Device Policy is received by the AE, it is forwarded
to the device following the procedures described in Section 2.2. Once received,
the policy will immediately begin to apply. If there are any conflicts between
the user’s device and the new-applied policy, e.g., an installed application is not
allowed by the policy, the device manager will freeze the profile until the device
is compliant with the policy, e.g., forcing the user to manually uninstall the
offending PA-App. Finally, DyPolDroid uses a SHA 256 hash in conjunction with



1 { "defaultPermissionPolicy": "PROMPT",

2 "applications": [{

3 "packageName": "com.example.laverna",

4 "installType": "REQUIRED_FOR_SETUP",

5 "permissionGrants": [

6 { "permission": "android.permission.READ_CONTACTS",

7 "policy": "BLOCK"},

8 { "permission": "android.permission.READ_SMS",

9 "policy": "BLOCK"}

10 ]}

Listing 1.2. A Device Policy for the Laverna PA-App.

the application package to ensure that if different versions of the same potential
PA-App are installed, only matching apps have the appropriate actions taken
against them. This is important when there are multiple versions of the same
app installed on devices for different users, e.g. v1.1.33 and v1.1.34.

4 Preliminary Evaluation

For the purposes of evaluating our approach, we have developed Laverna: a
proof-of-concept PA-App that requests several permissions for benign function-
ing, getting full access to the user’s contacts, real time location, and SMS so
it can serve as a messaging application. However, it also silently exploits the
granted permissions to collect and leak data to a remote server when the user
is messaging another user. The leaked data includes the contact’s full name and
phone number and the messages sent, including who the sender and receiver
are. The Counter-Policy shown in Listing 1.1 gives the response to the different
types of attacks a users wants to defend against. In this case the two attacks are:
Steal Contacts, and Steal Messages. Should any of the attacks be found when an-
alyzing the application, the action taken against the used permissions will be to
deny them. This change in allowed permissions is reflected in the JSON-based
Device Policy shown in Listing 1.2.

In our experiments, Laverna was downloaded on an experimental device, and
a user was allowed to select what permissions can be granted before installed
such PA-App. Our tests show that DyPolDroid was able to block this application
from collecting the user’s data and sending it off the device. Since a subset of
the permissions requested by Laverna were found to be malicious, the default
policy was overridden to block them on the device. While this approach does
not preemptively block the leaking of user data, once DyPolDroid has been
performed its analysis future cases will mitigate such attacks.



5 Related Work

As described in Section 1, several different approaches in the literature have
addressed the problem of malicious applications in Android. In such regard,
DyPolDroid is not the first attempt at increasing the security of mobile devices,
nor the first to propose fine-grained device policies. In this section, we compare
DyPolDroid with previous work, describe similarities and sources of inspiration,
and also clarify key differences that add up to the novelty of our approach.

VetDroid [24] was intended to discover and vet undesirable behaviors in An-
droid applications, by analyzing how permissions are used to access (sensitive)
system resources, and how these resources are further utilized by the application,
allowing for security analysts to easily examine the internal sensitive behaviors
of an app. Our description of PA-Apps, presented in Section 2, is inspired on
this idea. DyPolDroid goes as step further by introducing the concept of attack
patterns in Section 3.3 to identify malicious behavior in potential PA-Apps.

Kratos [5] is a vendor independent tool for detecting errors in Android se-
curity enforcement. It allows for potential permission misuse to be more easily
located by creating a call graph of the Android system image, and marking each
entry-point to the graph. The nodes in the graph are annotated with security
relevant information. The taint analysis depicted by DyPolDroid, which is de-
scribed in Section 3.3, follows a similar approach. However, we aim to detect
well-defined attack patterns on the sequences of method calls exhibited by po-
tential PA-Apps. If a pattern is detected, it may be then subsequently restricted
by means of a Counter and a related Device Policy.

Slavin et al. [28] proposed a technique to automatically detect policy vio-
lations due to errors or omissions within Android applications. They were able
to classify these violations into two categories: strong and weak violations. The
former is when an application fails to state the data collection purpose, while
the latter is when the application vaguely describes its data collection process.
DyPolDroid depicts a similar approach in which potentially malicious PA-Apps
are identified by the attack patterns they depict within their code. However, the
restriction of such PA-Apps may not only depend on their successful identifica-
tion, but also on the Counter and Device policies as illustrated in Section 3.4.

DroidCap [29] introduced OS-level support for so-called capability-based per-
missions in Android, which provided further separation of privileges within an
application by modifying the Android Zygote and IPC. Whereas this technique
may able to provide a fine-grained, more specific approach for defeating mali-
cious apps, it still requires modifications to the Android OS itself, which can be
a considerable barrier for its adoption in practice. In contrast, since DyPolDroid

relies on the remote configuration features of the AE, it requires no modification
to the OS of the managed devices.

BorderPatrol [30] leverages the Bring Your Own Device (BYOD) paradigm,
similar to the work profile discussed in Section 2.2. It protects devices by creat-
ing a customized Mobile Device Manager that leverages fine-grained contextual
information, thus providing a more fine-grained approach than the AE. How-



ever, since BorderPatrol uses the Xposed Module Repository [31], it requires
root access to managed devices, which may introduce additional trouble [32].

Finally, Reaper [33] provides real-time analysis of Android apps, in an effort
to augment and complement the Android Permission System, thus potentially
counteracting ongoing attacks. As with DyPolDroid, Reaper leverages dynamic
analysis of Android APK files to detect permission abuse, and also uses stack
trace info of the running process for further processing. However, it also leverages
the Xposed framework, thus, it also requires root access to devices.

6 Conclusions and Future Work

PA-Apps are still an ongoing problem for Android Ecosystems. In such regard,
DyPolDroid offers an effective and convenient solution that requires no root
access to user’s devices nor any modifications to the code of PA-Apps: two con-
straints that have limited the deployment in practice of previous approaches.

As a matter of ongoing and future work, we are currently analyzing sev-
eral PA-Apps to identify Attack Patterns and potential templates for Counter-
Policies that can effectively defeat them. We plan to use this insight to conduct
a study in which users sign up for an experimental Android Enterprise. Then, we
aim to collect data on how the devices are used, and verify whether DyPolDroid
was able to accurately detect when permissions were improperly abused. Also,
we will collect data regarding the level of user satisfaction with respect to the
restrictions observed in the functionality of potential PA-Apps as a result of us-
ing DyPolDroid. Finally, we must notice that the Android Open Source Project
does not maintain a complete mapping of the public permission functions, which
is required by our analysis described in Section 3.3. In the past, there have been
noticeable attempts to determine these, namely Axplorer [34], and PScout [35].
However, at the moment of publication of this paper, the aforementioned ap-
proaches were no longer up-to-date with newer versions of Android. Therefore,
we plan to further work on this issue, as should more up-to-date mappings be-
come available in the future, the accuracy of DyPolDroid will likely increase.

Acknowledgments

This work is partially supported by a grant from the National Science Founda-
tion (NSF-SFS-1129561), a grant from the Center for Cybersecurity and Digital
Forensics at Arizona State University, and by a startup funds grant from Texas
A&M University – Corpus Christi.

References

1. ZDNet. (2020) Play store identified as main distribution vector for most
android malware. [Online]. Available: https://www.zdnet.com/article/play-store-\
identified-as-main-distribution-vector-for-most-android-malware/

https://www.zdnet.com/article/play-store- \ identified-as-main-distribution-vector-for-most-android-malware/
https://www.zdnet.com/article/play-store- \ identified-as-main-distribution-vector-for-most-android-malware/


2. The New York Times. (2020) The Lesson We’re Learning From TikTok? It’s
All About Our Data. [Online]. Available: https://www.nytimes.com/2020/08/26/
technology/personaltech/tiktok-data-apps.html

3. Wired. (2020) A barcode scanner app with millions of down-
loads goes rogue. [Online]. Available: https://www.wired.com/story/
barcode-scanner-app-millions-downloads-goes-rogue/

4. Android Authority. (2020) Report: Hundreds of apps have hidden tracking software
used by the government. [Online]. Available: https://www.androidauthority.com/
government-tracking-apps-1145989/

5. Y. Shao, J. Ott, Q. A. Chen, Z. Qian, and Z. Mao, “Kratos: Discovering inconsistent
security policy enforcement in the android framework,” in Proc. of the Network and
Distributed System Security Symposium (NDSS) 2016, January 2016.

6. Sunday Express. (2020) Android’s biggest issue is far
worse than we ever imagined, new research proves. [On-
line]. Available: https://www.express.co.uk/life-style/science-technology/
1362551/Android-Google-Play-Store-malware-problem-researc

7. PC Magazine. (2020) Android Users Need to Manually Remove
These 16 Infected Apps. [Online]. Available: https://www.pcmag.com/news/
android-users-need-to-manually-remove-these-17-infected-apps

8. Google. (2021) Android Enterprise. [Online]. Available: https://www.android.
com/enterprise/

9. A. Arora, S. K. Peddoju, and M. Conti, “Permpair: Android malware detection us-
ing permission pairs,” IEEE Transactions on Information Forensics and Security,
vol. 15, pp. 1968–1982, 2020.

10. T. Vidas, D. Votipka, and N. Christin, “All your droid are belong to us: A survey
of current android attacks,” in Proceedings of the 5th USENIX Conf. on Offensive
Technologies, ser. WOOT’11. USA: USENIX Association, 2011, p. 10.

11. R. Zachariah, K. Akash, M. S. Yousef, and A. M. Chacko, “Android malware
detection a survey,” in 2017 IEEE Int. Conf. on Circuits and Systems (ICCS),
2017, pp. 238–244.

12. Hill, Matthew and Rubio-Medrano, Carlos E., “DyPolDroid Github Repository,”
2021, https://github.com/sefcom/DyPolDroid.

13. IEEE. (2021) The 6th ieee european symposium on security and privacy. [Online].
Available: http://www.ieee-security.org/TC/EuroSP2021/

14. A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android permissions
demystified,” in Proceedings of the 18th ACM Conf. on Computer and Communi-
cations Security, ser. CCS ’11. New York, NY, USA: ACM, 2011, p. 627–638.

15. A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D. Wagner, “Android
permissions: User attention, comprehension, and behavior,” in Proc. of the Eighth
Symp. on Usable Privacy and Sec. New York, NY, USA: ACM, 2012.

16. S. Ramachandran, A. Dimitri, M. Galinium, M. Tahir, I. V. Ananth, C. H. Schunck,
and M. Talamo, “Understanding and granting android permissions: A user survey,”
in 2017 Int. Carnahan Conf. on Security Technology (ICCST), 2017, pp. 1–6.

17. Google. (2021) Permissions on android. [Online]. Available: https://developer.
android.com/guide/topics/permissions/overview

18. W. Enck, “Analysis of access control enforcement in android,” in Proc. of the 25th
ACM Symposium on Access Control Models and Technologies, ser. SACMAT ’20.
New York, NY, USA: ACM, 2020, p. 117–118.

19. X. Wei, L. Gomez, I. Neamtiu, and M. Faloutsos, “Permission evolution in the
android ecosystem,” in Proc. of the 28th Annual Computer Security Applications
Conf., ser. ACSAC ’12. New York, NY, USA: ACM, 2012, p. 31–40.

https://www.nytimes.com/2020/08/26/technology/personaltech/tiktok-data-apps.html
https://www.nytimes.com/2020/08/26/technology/personaltech/tiktok-data-apps.html
https://www.wired.com/story/barcode-scanner-app-millions-downloads-goes-rogue/
https://www.wired.com/story/barcode-scanner-app-millions-downloads-goes-rogue/
https://www.androidauthority.com/government-tracking-apps-1145989/
https://www.androidauthority.com/government-tracking-apps-1145989/
https://www.express.co.uk/life-style/science-technology/1362551/Android-Google-Play-Store-malware-problem-researc
https://www.express.co.uk/life-style/science-technology/1362551/Android-Google-Play-Store-malware-problem-researc
https://www.pcmag.com/news/android-users-need-to-manually-remove-these-17-infected-apps
https://www.pcmag.com/news/android-users-need-to-manually-remove-these-17-infected-apps
https://www.android.com/enterprise/
https://www.android.com/enterprise/
https://github.com/sefcom/DyPolDroid
http://www.ieee-security.org/TC/EuroSP2021/
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/guide/topics/permissions/overview


20. H. Wang, Y. Guo, Z. Tang, G. Bai, and X. Chen, “Reevaluating android permission
gaps with static and dynamic analysis,” in 2015 IEEE Global Communications
Conf. (GLOBECOM), 2015, pp. 1–6.

21. P. Calciati and A. Gorla, “How do apps evolve in their permission requests? a pre-
liminary study,” in 2017 IEEE/ACM 14th Int. Conf. on Mining Software Reposi-
tories (MSR), 2017, pp. 37–41.

22. S. Wu and J. Liu, “Overprivileged permission detection for android applications,”
in ICC 2019 - 2019 IEEE Int. Conf. on Communications (ICC), 2019, pp. 1–6.

23. Y. Zhauniarovich, M. Ahmad, O. Gadyatskaya, B. Crispo, and F. Massacci, “Sta-
dyna: Addressing the problem of dynamic code updates in the security analysis
of android applications,” in Proc. of the 5th ACM Conf. on Data and Application
Security and Privacy. New York, NY, USA: ACM, 2015, p. 37–48.

24. Y. Zhang, M. Yang, B. Xu, Z. Yang, G. Gu, P. Ning, X. S. Wang, and B. Zang,
“Vetting undesirable behaviors in android apps with permission use analysis,” in
Proceedings of the 2013 ACM SIGSAC Conf. on Computer and Communications
Security, ser. CCS ’13. New York, NY, USA: ACM, 2013, p. 611–622.

25. OASIS Standard, “eXtensible Access Control Markup Language (XACML) Version
3.0. (2013, January 22),” 2013, http://docs.oasis-open.org/xacml/3.0/xacml-3.
0-core-spec-os-en.html.

26. D. Y. Zhu, J. Jung, D. Song, T. Kohno, and D. Wetherall, “Tainteraser: Protecting
sensitive data leaks using application-level taint tracking,” SIGOPS Oper. Syst.
Rev., vol. 45, no. 1, p. 142–154, Feb. 2011.

27. S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon,
D. Octeau, and P. McDaniel, “Flowdroid: Precise context, flow, field, object-
sensitive and lifecycle-aware taint analysis for android apps,” ser. PLDI ’14. New
York, NY, USA: ACM, 2014, p. 259–269.

28. R. Slavin, X. Wang, M. B. Hosseini, J. Hester, R. Krishnan, J. Bhatia, T. D.
Breaux, and J. Niu, “Toward a framework for detecting privacy policy violations
in android application code,” in Proceedings of the 38th International Conf. on
Software Engineering, ser. ICSE ’16, New York, NY, USA, 2016, p. 25–36.

29. A. Dawoud and S. Bugiel, “Droidcap: Os support for capability-based permissions
in android,” in Proc. of the Network and Distributed System Security Symposium
(NDSS) 2019, 01 2019.

30. O. Zungur, G. Suarez-Tangil, G. Stringhini, and M. Egele, “Borderpatrol: Securing
byod using fine-grained contextual information,” in 2019 49th Annual IEEE/IFIP
Int, Conf. on Dependable Systems and Networks (DSN), 2019, pp. 460–472.

31. Drupal, “Xposed Module Repository,” 2021, https://repo.xposed.info/.

32. I. Gasparis, Z. Qian, C. Song, and S. V. Krishnamurthy, “Detecting
android root exploits by learning from root providers,” in 26th USENIX
Security Symposium. Vancouver, BC: USENIX Association, Aug. 2017, pp.
1129–1144. [Online]. Available: https://www.usenix.org/Conf./usenixsecurity17/
technical-sessions/presentation/gasparis

33. M. Diamantaris, E. P. Papadopoulos, E. P. Markatos, S. Ioannidis, and J. Polakis,
“Reaper: Real-time app analysis for augmenting the android permission system,”
ser. CODASPY ’19. New York, NY, USA: ACM, 2019, p. 37–48.

34. M. Backes, S. Bugiel, E. Derr, P. McDaniel, D. Octeau, and S. Weisgerber, “On
demystifying the android application framework: Re-visiting android permission
specification analysis,” in Proceedings of the 25th USENIX Conf. on Security Sym-
posium, ser. SEC’16, USA, 2016, p. 1101–1118.

http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
https://repo.xposed.info/
https://www.usenix.org/Conf./usenixsecurity17/technical-sessions/presentation/gasparis
https://www.usenix.org/Conf./usenixsecurity17/technical-sessions/presentation/gasparis


35. K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie, “Pscout: Analyzing the android
permission specification,” in Proceedings of the 2012 ACM Conf. on Computer and
Communications Security, ser. CCS ’12, New York, NY, USA, 2012, p. 217–228.


	DyPolDroid: Protecting Users and Organizations from Permission-Abuse Attacks in Android 

